Wir verwenden Cookies, um Ihre Erfahrung zu verbessern. Um die neuen Datenschutzrichtlinien zu erfüllen, müssen wir Sie um Ihre Zustimmung für Cookies fragen. Weitere Informationen
Einführung in die Strukturdynamik
Modelle und Anwendungen
Von Dinkler, Dieter
Lieferbar
Lieferzeit: 7 - 10 Werktage
49,99 €
ISBN-13 | 978-3-658-31844-4 |
---|---|
Erscheinungsjahr | 2020 |
Verlag | Springer-Vieweg Verlag |
Ausgabe | 3. Auflage 2020 |
Umfang / Format | 419 Seiten, mit 252 Abbildungen, Kartoniert |
Medium | Buch |
Das Lehrbuch gibt eine Einführung in die Strukturdynamik und umfasst die Grundlagen der Modellbildung sowie die grundlegenden Beschreibungsmöglichkeiten und Lösungswege für die Untersuchung des Schwingungsverhaltens von Starrkörpersystemen und Stabtragwerken. Ergänzt werden die Grundlagen durch Modelle für verschiedene baupraktische Anwendungen aus dem Bereich der Aeroelastizität, der Seilnetze, der Brücken und der Rotordynamik. Eine Einführung in die numerische Integration von Bewegungsgleichungen ergänzt die analytischen Lösungsverfahren.
Einführung
Schwingungen
Modellbildung für Starrkörpersysteme
Aufstellen von Bewegungsgleichungen
Gesamtlösung linearer Bewegungsgleichungen
Freie Schwingungen
Erzwungene Schwingungen - periodisch
Erzwungene Schwingungen - unperiodisch
Matrizenschreibweise
Systematisches Aufstellen der Systemmatrizen
Bewegungsgleichungen für Stabtragwerke
Freie Schwingungen ungedämpfter Systeme
Entkopplung der Bewegungsgleichungen
Erzwungene Schwingungen - ungedämpft
Schwingungen in komplexer Darstellung
Modellierung kontinuierlicher Dämpfer
Freie gedämpfte Schwingungen
Erzwungene Schwingungen in komplexer Schreibweise
Erzwungene Schwingungen von Systemen
Modal-Analyse bei Rayleigh-Dämpfung
Modal-Analyse bei viskoser Dämpfung
Reduktion der Zahl der Freiheitsgrade
Modal-Synthese
Erdbebenanalyse von Tragwerken
Analyse von Seilnetzen und Membranen
Einführung in die Aeroelastizität
Eisenbahnbrücke bei schneller Zugüberfahrt
Menschen-induzierte Schwingungen von Brücken
Rotierende Systeme
Numerische Integration der Bewegungsgleichung
Berechnung der Eigenwerte und Eigenvektoren
Schwingungen
Modellbildung für Starrkörpersysteme
Aufstellen von Bewegungsgleichungen
Gesamtlösung linearer Bewegungsgleichungen
Freie Schwingungen
Erzwungene Schwingungen - periodisch
Erzwungene Schwingungen - unperiodisch
Matrizenschreibweise
Systematisches Aufstellen der Systemmatrizen
Bewegungsgleichungen für Stabtragwerke
Freie Schwingungen ungedämpfter Systeme
Entkopplung der Bewegungsgleichungen
Erzwungene Schwingungen - ungedämpft
Schwingungen in komplexer Darstellung
Modellierung kontinuierlicher Dämpfer
Freie gedämpfte Schwingungen
Erzwungene Schwingungen in komplexer Schreibweise
Erzwungene Schwingungen von Systemen
Modal-Analyse bei Rayleigh-Dämpfung
Modal-Analyse bei viskoser Dämpfung
Reduktion der Zahl der Freiheitsgrade
Modal-Synthese
Erdbebenanalyse von Tragwerken
Analyse von Seilnetzen und Membranen
Einführung in die Aeroelastizität
Eisenbahnbrücke bei schneller Zugüberfahrt
Menschen-induzierte Schwingungen von Brücken
Rotierende Systeme
Numerische Integration der Bewegungsgleichung
Berechnung der Eigenwerte und Eigenvektoren
ISBN-13 | 978-3-658-31844-4 |
---|---|
Erscheinungsjahr | 2020 |
Verlag | Springer-Vieweg Verlag |
Ausgabe | 3. Auflage 2020 |
Umfang / Format | 419 Seiten, mit 252 Abbildungen, Kartoniert |
Medium | Buch |