# Beispiel 4: Punktförmig gestützte Platte

### Inhalt

|         | Aufgabenstellung                                                     | 4-2        |
|---------|----------------------------------------------------------------------|------------|
| 1       | System, Bauteilmaße, Betondeckung                                    | 4-2        |
| 1.1     | Jystem.                                                              | 4-2        |
| 1.2     | Restimmung der Deckendicke aus der Begrenzung der Verformungen       | 4-3<br>1 2 |
| 1.0     | Destimining der Deckendicke aus der Degrenzung der Venomnungen       | 4-0        |
| 2       | Einwirkungen                                                         | 4-5        |
| 2.1     | Charakteristische Werte                                              | 4-5        |
| 2.2     | Bemessungswerte in den Grenzzuständen der Tragfähigkeit              | 4-5        |
| 2.3     | Reprasentative Werte in den Grenzzustanden der Gebrauchstauglichkeit | 4-6        |
| 3       | Schnittgrößenermittlung                                              | 4-6        |
| 3.1     | Grenzzustände der Tragfähigkeit                                      | 4-6        |
| 3.2     | Grenzzustände der Gebrauchstauglichkeit                              | 4-10       |
| 4       | Bemessung in den Grenzzuständen der Tragfähigkeit                    | 4-10       |
| 4.1     | Bemessungswerte der Baustoffe.                                       | 4-10       |
| 4.2     | Bemessung für Biegung                                                | 4-11       |
| 4.3     | Bemessung für Querkraft                                              | 4-12       |
| 4.3.1   | Durchstanzen                                                         | 4-12       |
| 4.3.1.1 | Aufzunehmende Querkräfte                                             | 4-13       |
| 4.3.1.2 | Innenstützen                                                         | 4-14       |
| 4.3.1.3 | Eck- und Randstützen                                                 | 4-17       |
| 4.3.1.4 | Wandende                                                             | 4-20       |
| 4.3.2   | Querkraftbemessung außerhalb der Durchstanzbereiche                  | 4-22       |
| 4.4     | Brandschutztechnischer Nachweis                                      | 4-23       |
| 5       | Nachweise in den Grenzzuständen der Gebrauchstauglichkeit            | 4-24       |
| 5.1     | Begrenzung der Spannungen unter Gebrauchsbedingungen                 | 4-24       |
| 5.2     | Grenzzustände der Rissbildung                                        | 4-24       |
| 5.2.1   | Mindestbewehrung zur Begrenzung der Rissbreite                       | 4-24       |
| 5.2.2   | Begrenzung der Rissbreite für die statisch erforderliche Bewehrung   | 4-25       |
| 5.3     | Begrenzung der Verformungen                                          | 4-25       |
| 6       | Bewehrungsführung, bauliche Durchbildung                             | 4-26       |
| 6.1     | Grundwert der Verankerungslänge.                                     | 4-26       |
| 6.2     | Verankerung an den Rand- und Eckstützen                              | 4-26       |
| 6.3     | Verankerung an den Innenstützen                                      | 4-28       |
| 6.4     | Verankerung außerhalb der Auflager                                   | 4-28       |
| 6.5     | Mindestbewehrung zur Sicherstellung eines duktilen Bauteilverhaltens | 4-29       |
| 7       | Darstellung der Bewehrung                                            | 4-30       |
|         | J ··· ··· -·· J ···· J                                               |            |

# Beispiel 4: Punktförmig gestützte Platte

## Aufgabenstellung

Zu bemessen ist die Flachdecke eines Geschossbaus. Untersucht werden: Innen-, Rand- und Eckfeld.

Die Stützen und die Flachdecke sind monolithisch verbunden. Rand- und Eckstützen sind bündig am Deckenrand angeordnet. Die Stützenachsen bilden ein quadratisches Raster.

Unverschiebliches System (Gebäude mit Wandscheiben ausgesteift). Bürogebäude, 5 Geschosse, Geschosshöhe 3,0 m. Umgebungsbedingungen: geschlossene Innenräume.

Vorwiegend ruhende Einwirkungen.

Brandschutztechnische Anforderung: REI 60 (hochfeuerhemmend)

Baustoffe:

| • | Beton          | C35/45             |
|---|----------------|--------------------|
| • | Betonstabstahl | B500B (hochduktil) |

# 1 System, Bauteilmaße, Betondeckung

1.1 System



EC2-1-1, NA.1.5.2.5: üblicher Hochbau

EC2-1-1, 5.8.3.3: Kriterien für verschiebliche Systeme

EC2-1-1, NA.1.5.2.6: vorwiegend ruhende Einwirkung

Tragende und raumabschließende Decke in Gebäudeklasse 4 nach MBO [2]

EC2-1-1, 3.1: Beton EC2-1-1, 3.2: Betonstahl

Darstellung unmaßstäblich!

EC2-1-1, (NCI) 9.5.1: (1) Mindestquerschnitt für Stützen 200 / 200 mm

Annahme:

Anzahl der Felder  $\geq$  4 in beiden Richtungen, d. h. die Stütze C/3 ist nur von Innenfeldern umgeben.

Darstellung unmaßstäblich

| 1.2 Mindestfestigkeitsklasse, E                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Betondeckung                                                                                                                                                                                                                                                                                                             | EC2-1-1, 4: Dauerhaftigkeit und Betondeckung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expositionsklasse für Bewehrungskorrosi<br>infolge Karbonatisierung:<br>Mindestfestigkeitsklasse Beton                                                                                                                                                                                                                                                                                                                                                                                 | on<br>→ XC1<br>→ C16/20                                                                                                                                                                                                                                                                                                  | EC2-1-1, Tab. 4.1: Expositionsklassen<br>XC1 trocken (Bauteile in Innenräumen)<br>Annahme: Plattenrand im Innenbereich<br>EC2-1-1, Anhang E, Tab. E.1.DE:<br>Mindostdrugkfastigkeiteklasse                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Feuchtigkeitsklasse für Betonangriff:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | →WO                                                                                                                                                                                                                                                                                                                      | WO – ohne Betonkorrosion infolge Alkali-<br>Kieselsäurereaktion (Innenbauteile des üblichen<br>Hochbaus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gewählt: C35/45 XC1, W                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                        | Die höhere Betonfestigkeitsklasse wird im<br>Hinblick auf die Bemessung gewählt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Betondeckung<br>wegen Expositionsklasse XC1:<br>$\rightarrow$ Mindestbetondeckung<br>+ Vorhaltemaß<br>$\rightarrow$ Mindestnennmaß<br>Cnom<br>Zur Sicherstellung des Verbundes: $c_{min,b} \ge$<br>Bügel $\phi$ 10:<br>$c_{min,b} = 10 \text{ mm}$<br>Längsbewehrung $\le \phi$ 20: $c_{min,b} = 20 \text{ mm}$<br>Daraus ergeben sich als Verlegemaße (B<br>Bügel $\phi$ 10:<br>$c_{B\bar{u}} = c_{V,l} - \phi$<br>Längs $\le \phi$ 20:<br>$c_{V,l} = c_{B\bar{u}} + \phi_{B\bar{u}}$ | = 10 mm<br>= 10 mm<br>= 20 mm<br>$\Delta C_{dev} = 10 \text{ mm } C_{nom,B\tilde{u}} = 20 \text{ mm}$<br>$\Delta C_{dev} = 10 \text{ mm } C_{nom,I} = 30 \text{ mm}$<br>$\Delta C_{dev} = 10 \text{ mm } C_{nom,I} = 30 \text{ mm}$<br>$\Xi = 30 - 10 = 20 \text{ mm} \ge C_{nom,B\tilde{u}}$<br>= 30 mm $\ge C_{nom,I}$ | EC2-1-1, (NDP) Tab. 4.4DE:<br>Mindestbetondeckung $c_{min,dur}$<br>EC2-1-1, (NDP) 4.4.1.3: (1) Vorhaltemaß $\Delta c_{dev}$<br>EC2-1-1, 4.4.1.1: (2), Gl. (4.1)<br>Nennmaß $c_{nom}$<br>Keine Abminderung von $c_{min,dur}$ um 5 mm gemäß<br>Tab. 4.3DE zulässig, da Expositionsklasse XC1.<br>EC2-1-1, 4.4.1.2: (3)<br>EC2-1-1, (NCI) 4.4.1.1: (2)P<br>Das Verlegemaß $c_v$ ergibt sich aus der<br>Bewehrungskonstruktion unter Beachtung der<br>nur in 5 mm-Stufen lieferbaren Abstandhalter.<br>EC2-1-1, (NCI) 9.4.3: (1) max $\phi_{B\bar{u}}$ der<br>Durchstanzbewehrung<br>Die Annahme, dass die Bügel der Querkraft-<br>bewehrung die äußere Längsbewehrungslage |
| Die Längsbewehrung wird mit Abstandha<br>Bewehrungsplan angeben). Die Bügel we<br>Platte im Bewehrungskorb integriert (ohne                                                                                                                                                                                                                                                                                                                                                            | iltern 30 mm unterstützt (auf dem<br>erden nur im Durchstanzbereich der<br>e Abstandhalter).                                                                                                                                                                                                                             | umschließen, liegt für die Ermittlung der<br>Nutzhöhe immer auf der sicheren Seite.<br>Hinweise zum Brandschutz siehe 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.3 Bestimmung der Deckend<br>der Verformungen                                                                                                                                                                                                                                                                                                                                                                                                                                         | icke aus der Begrenzung                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Der Nachweis der Begrenzung der Verfor<br>vereinfacht durch eine Begrenzung der B<br>Über diesen Nachweis lässt sich die erfor<br>abschätzen.                                                                                                                                                                                                                                                                                                                                          | mungen nach EC2-1-1 darf<br>iegeschlankheit geführt werden.<br>rderliche Mindestdeckendicke                                                                                                                                                                                                                              | Der vereinfachte Durchbiegungsnachweis über<br>Biegeschlankheiten ist nur eine Näherung. Bei<br>durchbiegungsempfindlichen Bauteilen wie<br>dünnen Flachdecken sollte eine realistischere<br>Durchbiegungsberechnung unter Berücksich-<br>tigung der Lasten der Lagerungsbedingungen                                                                                                                                                                                                                                                                                                                                                                                    |
| Im Folgenden werden zwei Varianten unt                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tersucht:                                                                                                                                                                                                                                                                                                                | und der Bewehrung durchgeführt werden.<br>Hinweis: Der zu erwartende Durchhang darf auch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>a) EC2-1-1, 7.4.1 (5): Verformungsb<br/>Schäden an angrenzenden Baute<br/>ständiger Einwirkungskombinatio<br/>≤ <i>l</i> / 500)</li> </ul>                                                                                                                                                                                                                                                                                                                                    | begrenzung zur Vermeidung von<br>eilen (Durchbiegung unter quasi-<br>on nach Einbau dieser Bauteile                                                                                                                                                                                                                      | durch Schalungsüberhöhungen teilweise oder<br>ganz ausgeglichen werden, siehe<br>EC2-1-1, 7.4.1: (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| b) EC2-1-1, 7.4.1 (4): Verformungsb<br>und Gebrauchstauglichkeit (Duro<br>Einwirkungskombination $\leq l / 250$                                                                                                                                                                                                                                                                                                                                                                        | begrenzung für Erscheinungsbild<br>Shhang unter quasi-ständiger<br>))                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Variante a): Durchbiegung $\leq l / 500$                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Oberer Grenzwert der Biegeschlankheit fü<br>Anforderungen:                                                                                                                                                                                                                                                                                                                                                                                                                             | ür Deckenplatte mit höheren                                                                                                                                                                                                                                                                                              | EC2-1-1, (NCI) Zu 7.4.2: (2)<br>Die Biegeschlankheiten sollten jedoch bei<br>Bauteilen, die verformungsempfindliche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $l / d \le K^2 \cdot 150 / l = 1,2^2 \cdot 150 / 6$                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,75 = 32                                                                                                                                                                                                                                                                                                                | Auspauelemente peelntrachtigen konnen, auf $l / d \le K^2 \cdot 150 / l$ begrenzt werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zu diesem Wert gehört ein Grenzbewehru<br>schreitung geringere Biegeschlankheiten<br>zunächst angenommen, dass der später<br>im GZT geringer sein wird.                                                                                                                                                                                                                                                                                                                                | ungsgrad, bei dessen Über-<br>erforderlich werden. Es wird<br>erforderliche Bewehrungsgrad                                                                                                                                                                                                                               | EC2-1-1, 7.4.2: (2), Tab. 7.4N: $K = 1,2$<br>Flachdecke, die ohne Unterzüge auf Stützen<br>gelagert ist (mit der größeren Spannweite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



h

= 260 mm  $\approx$  erf h = 261 mm > min h = 200 mm



Die Unterschreitung des angenommenen Grenzbewehrungsgrades wäre in der Bemessung auf Biegung im GZT zu überprüfen.

#### Variante b): Durchhang $\leq l / 250$

Oberer Grenzwert der Biegeschlankheit für Deckenplatte mit normalen Anforderungen:

 $l / d \le K \cdot 35 = 1,2 \cdot 35 = 42$ 

→ erf  $d \ge l / 42 \ge 6750 / 42 = 160$  mm

Zu diesem Wert gehört ein Grenzbewehrungsgrad, bei dessen Überschreitung geringere Biegeschlankheiten erforderlich werden. Es wird zunächst angenommen, dass der später erforderliche Bewehrungsgrad im GZT geringer sein wird.

 $\rightarrow \rho \leq \rho_{\text{im}} = 0,363$  % (siehe Grafik)



Bei Flachdecken mit Stützweiten über 8,5 m, die leichte Trennwände tragen, die durch übermäßige Durchbiegung beschädigt werden könnten, sind in der Regel die Werte I / d'nach Gleichung (7.16) mit dem Faktor 8,5 /  $I_{eff}$  [m] zu multiplizieren  $\rightarrow$  hier wegen 6,75 m nicht erforderlich.

Annahme:  $\phi \leq 20$  mm

EC2-1-1, (NCI) 9.3.2: (1) Mindestdicke für Platten mit Durchstanzbewehrung min h = 200 mm

EC2-1-1, 7.4.2: (2)

Referenzbewehrungsgrad für C35/45  $\rho_0 = 10^3 \cdot \sqrt{f_{ck}} = 10^3 \cdot \sqrt{35} = 0,0059 = 0,59 \%$   $\rightarrow$  grafische Auswertung der Gleichung (7.16a) für  $\rho \le \rho_0$ 

$$\frac{l}{d} = K \cdot \left[ 11 + 1.5\sqrt{f_{ck}} \frac{\rho_0}{\rho} + 3.2\sqrt{f_{ck}} \left(\frac{\rho_0}{\rho} - 1\right)^{3/2} \right]$$

Verformungsgrenzwerte EC2-1-1, 7.4.1: (5) Verformungen, die angrenzende Bauteile des Tragwerks beschädigen könnten, sind in der Regel zu begrenzen. Für die Durchbiegung unter quasi-ständiger Einwirkungskombination nach Einbau dieser Bauteile darf als Richtwert für die Begrenzung 1/500 der Stützweite angenommen werden....

EC2-1-1, (NCI) Zu 7.4.2: (2) Die Biegeschlankheiten sollten jedoch allgemein auf die Maximalwerte  $l / d \le K \cdot 35$  begrenzt werden.

durch Einsetzen in EC2-1-1, Gleichung (7.16a)  $\rightarrow$  vgl. auch [1], Kommentarteil zu 7.4 nktförmid otützto Platt

| Punktformig                                                          | gestutzte                                             | e Platte                                                                                                                                    |                                                                                                                                                 | 4-5                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| im Feld:                                                             | h                                                     | $\geq \operatorname{erf} d + \phi + c_v ( \rightarrow \operatorname{beide} = 160 + 20 + 30 = 210  \mathrm{mm}$                              | Bewehrungslagen)<br>m                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |
| gewählt                                                              | h                                                     | = 240 mm > erf <i>h</i> = 210 m                                                                                                             | nm > min <i>h</i> = 200 mm                                                                                                                      | EC2-1-1, (NCl) 9.3.2: (1) Mindestdicke für Platten mit Durchstanzbewehrung: min $h = 200$ mm                                                                                                                                                                                                                                                                                                     |
| Aus der Biegel<br>erforderlicher E                                   | oemessi<br>Bewehru                                    | ung nach 4.2 ergibt sich mit d<br>ngsgrad im Feldbereich:                                                                                   | ieser Deckendicke ein                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |
| $a_{sm,F} = \rho = 7,$<br>$\rightarrow$ Nac                          | (0,6 ⋅ 6,<br>17 cm² /<br>chweis <b>n</b>              | $(72 + 0.4 \cdot 7.85) = 7.17 \text{ cm}^2/\text{r}^2/\text{r}^3$<br>$(19 = 0.38 \% > \rho_{\text{lim}} = 0.363 \%$<br><b>icht</b> erfüllt! | m<br>% (= angenommen)                                                                                                                           | siehe auch 3.1: aus den Gurt- und Feldstreifen gewichtet $(d_z + d_y) / 2 = 0,19 \text{ m}$                                                                                                                                                                                                                                                                                                      |
| Die Biegeschla<br>sich eine zuläs                                    | ankheit n<br>sige Bie                                 | nuss daher reduziert werden.<br>geschlankheit von <i>l /d</i> ≤ 39 (s                                                                       | Für $ ho_{ m erf}$ = 0,38 % ergibt<br>siehe auch Grafik).                                                                                       | EC2-1-1, Gleichung (7.16a) für $\rho \le \rho_0$<br>$\frac{l}{c'} = 1.2 \cdot \left[ 11 + 1.5\sqrt{35} \frac{0.59}{0.38} + 3.2\sqrt{35} \left( \frac{0.59}{0.38} - 1 \right)^{\frac{3}{2}} \right] = 39$                                                                                                                                                                                         |
| $\rightarrow$ erf $d \ge l / 42$                                     | $2 \geq 6750$                                         | 0 / 39 = 173 mm                                                                                                                             |                                                                                                                                                 | Wird hei der Demoseung im CZT der Schötzwert                                                                                                                                                                                                                                                                                                                                                     |
| im Feld:                                                             | h                                                     | ≥ erf $d' + \phi + c_v$ (→ beide<br>= 173 + 20 + 30 = 223 m                                                                                 | Bewehrungslagen)<br>m                                                                                                                           | $\rho$ unterschritten, ist der Verformungsnachweis mit<br>dem oberen Grenzwert der Biegeschlankheit $I/d$<br>erbracht. Anderenfalls sind die Deckendicke zu<br>usterföhren bzu, der Nachweis gengung zu führen                                                                                                                                                                                   |
| gewählt                                                              | h                                                     | = 240 mm > erf <i>h</i> = 223 m                                                                                                             | nm > min <i>h</i> = 200 mm                                                                                                                      | $\rightarrow$ hier nicht erforderlich.                                                                                                                                                                                                                                                                                                                                                           |
| Der vereinfach<br>EC2-1-1 für die<br>als erbracht.                   | te Nachv<br>e Decker                                  | weis der Begrenzung der Durc<br>nplatte des üblichen Hochbau                                                                                | chbiegung nach<br>Ies gilt damit                                                                                                                | Zur Erfüllung der erhöhten Anforderungen an die<br>Durchbiegungsbegrenzung nach EC2-1-1, 7.4.1<br>(5) wäre eine Vergrößerung der Deckendicke auf                                                                                                                                                                                                                                                 |
| Um den direkte<br>sammlung [10<br>Variante b): nc<br>Deckendicke v   | en Vergle<br>] nach D<br>rmale Ar<br>ron <b>240 i</b> | eich mit dem Beispiel 4 aus d<br>NN 1045-1 zu erleichtern, wird<br>nforderungen an die Durchhai<br>mm weitergerechnet.                      | 260 mm erforderlich (siehe Variante a).<br>Hinweis: Mindestbauteildicke für<br>Feuerwiderstand gemäß EC2-1-2 zusätzlich<br>beachten (siehe 4.4) |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 Einv                                                               | virkun                                                | gen                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.1 Char                                                             | akterist                                              | tische Werte                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bezeichnung                                                          | der Einw                                              | virkungen                                                                                                                                   | Charakteristischer<br>Wert (kN/m <sup>2</sup> )                                                                                                 | Index k = charakteristisch<br>Fassadenlasten (horizontal und vertikal) werden<br>in diesem Beispiel nicht behandelt                                                                                                                                                                                                                                                                              |
| <b>Ständig</b> (Eige<br>- 240 mm Sta<br>- Belag und a<br>Summe:      | nlasten)<br>hlbetonv<br>bgehäng                       | :<br>rollplatte: 0,24 m · 25 kN/m³<br>gte Decke                                                                                             | 6,00<br>1,25<br>g <sub>k</sub> = <b>7,25</b>                                                                                                    | EC1-1-1, Tab. A.1: Stahlbeton<br>Annahme                                                                                                                                                                                                                                                                                                                                                         |
| <b>Veränderlich</b> :<br>- Nutzlast<br>- Trennwandzuschlag<br>Summe: |                                                       |                                                                                                                                             | 2,00<br>1,25<br>$q_{k,1} = 3,25$                                                                                                                | EC1-1-1, (NDP) Tab. 6.1DE, Kategorie B1<br>Büroflächen ohne besondere Anforderungen<br>einschließlich der Flure mit $q_k = 2,0$ kN/m <sup>2</sup> und<br>Trennwandzuschlag $\Delta q_k = 1,25$ kN/m <sup>2</sup><br>EC1-1-1, (NCI) 6.3.1.2: (8)<br>für Trennwände mit Eigenlasten (inkl. Putz)<br>von 3 kN/m $< q_k \le 5$ kN/m<br>$\Rightarrow$ Zuschlag $\Delta q_k \ge 1,2$ kN/m <sup>2</sup> |
| 2.2 Bem<br>Trag                                                      | essung<br>ähigke                                      | jswerte in den Grenzzus<br><sup>jit</sup>                                                                                                   | ständen der                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |
| Teilsicherheits                                                      | oeiwerte                                              | in den Grenzzuständen der T                                                                                                                 | ragfähigkeit:                                                                                                                                   | EC0, (NDP) A.1.3.1 (4), Tab. NA.1.2 (B):                                                                                                                                                                                                                                                                                                                                                         |

günstig ungünstig Einwirkungen: ständige  $\gamma_{\rm G}=1,0$  $\gamma_{\rm G}=1,35$ • veränderliche  $\gamma_Q = 0$  $\gamma_{\rm Q} = 1,50$ .

| $g_{\rm d} = \gamma_{\rm G} \cdot g_{\rm k}$     | = 1,35 · 7,25       | = 9,79 kN/m <sup>2</sup>  |
|--------------------------------------------------|---------------------|---------------------------|
| $q_{\rm d,1} = \gamma_{\rm Q} \cdot q_{\rm k,1}$ | $= 1,50 \cdot 3,25$ | = 4,88 kN/m <sup>2</sup>  |
|                                                  | $e_{d}$             | = 14,67 kN/m <sup>2</sup> |

EC0, (NDP) A.1.3.1 (4), Tab. NA.1.2 (B): Teilsicherheitsbeiwerte für Einwirkungen ungünstig bzw. günstig Die günstige Auswirkung der veränderlichen Einwirkung ist durch feldweise Lastanordnung zu berücksichtigen (entspricht  $\gamma_Q = 0$ ).

EC2-1-1, 2.4.3: (2) Für die Eigenlast darf durchgängig entweder der untere oder der obere Bemessungswert innerhalb eines Tragwerks verwendet werden, je nachdem, welcher Wert ungünstiger wirkt.



#### Gleichungen:

#### Stützmomente:

| (3.1) | $m_{\rm SS} = (k_{\rm SS}^{\rm g} \cdot g + k_{\rm SS}^{\rm q} \cdot q) \cdot c \cdot l_{\rm m1}^2$ |
|-------|-----------------------------------------------------------------------------------------------------|
| (3.2) | $m_{\rm SS} = (M_{\rm Su} - M_{\rm So}) / [d_{\rm s} \cdot (2, 2 + 8d_{\rm s} / l)]$                |
| (3.3) | $m_{\rm SS} = (M_{\rm Su} - M_{\rm So}) / 1,5 d_{\rm s}$                                            |
| (3.4) | $m_{\rm SG}=0.7\cdot m_{\rm SS}$                                                                    |
| (3.5) | $m_{\rm SF} = (k_{\rm SF}^{\rm g} \cdot g + k_{\rm SF}^{\rm q} \cdot q) \cdot l_{\rm m1}^2$         |
|       |                                                                                                     |

#### Feldmomente:

| (3.6) | $m_{\rm FG} = (k_{\rm FG}^{\rm g} \cdot g + k_{\rm FG}^{\rm q} \cdot q) \cdot l_{1}^{2}$ |
|-------|------------------------------------------------------------------------------------------|
| (3.7) | $m_{\rm FF} = (k_{\rm FF}^{\rm g} \cdot g + k_{\rm FF}^{\rm q} \cdot q) \cdot l_1^2$     |

#### Kopf- und Fußmomente:

| (3.9)  | $M_{\rm So} = M_{\rm R}^{(0)} \cdot c_{\rm o} / (1 + c_{\rm o} + c_{\rm u})$ |
|--------|------------------------------------------------------------------------------|
| (3.10) | $M_{\rm Su} = M_{\rm R}^{(0)} \cdot c_{\rm u} / (1 + c_{\rm o} + c_{\rm u})$ |
| (3.13) | $M_{\rm R}^{(0)} = -\psi \cdot (g + q) \cdot b_{\rm L} \cdot l_{1^2} / 12$   |

#### Innenfeld in *z*- und *y*-Richtung $l_1$ (m) = 6,75 m $l_2$ (m) = 6,75

| $\varepsilon = 1,0$ $d_s / \min l_1 = 0,067$ Tab. 3.4: $c = 1,00$ |                 |                        |                        |                 |                 |                 |             |                 |                 |
|-------------------------------------------------------------------|-----------------|------------------------|------------------------|-----------------|-----------------|-----------------|-------------|-----------------|-----------------|
| g [kN/m²] =                                                       | 9,79            | <i>q</i> [kN/m²] =     | 4,88                   |                 |                 |                 |             |                 |                 |
|                                                                   | Feldmor         | nente                  | Stützmomente           |                 |                 |                 |             |                 |                 |
|                                                                   |                 |                        |                        | (1) Innens      | stütze          | (2) 1. Inn      | enstütze    | (4) Innere E    | Eckstütze       |
| Tab.:                                                             | 3.1             | 3.1                    | 3.1                    | 3.5             |                 | 3.5             |             | 3.5             |                 |
| Streifen:                                                         | Feld            | Gurt                   | Feld                   | Gurt            | Gurt            | Gurt            | Gurt        | Gurt            | Gurt            |
| Lastfall                                                          | <b>k</b> FF     | <b>k</b> FG            | <b>k</b> sf            |                 | <b>k</b> ss     |                 | <b>k</b> ss |                 | <b>k</b> ss     |
| g                                                                 | 0,041           | 0,052                  | -0,030                 |                 | -0,203          |                 | -0,247      |                 | -0,273          |
| max q                                                             | 0,083           | 0,089                  |                        |                 |                 |                 |             |                 |                 |
| min q                                                             |                 |                        | -0,050                 |                 | -0,277          |                 | -0,296      |                 | -0,303          |
| GI.:                                                              | 3.7             | 3.6                    | 3.5                    | 3.4             | 3.1             | 3.4             | 3.1         | 3.4             | 3.1             |
| Lastfall                                                          | m <sub>FF</sub> | <i>m</i> <sub>FG</sub> | <i>m</i> <sub>SF</sub> | m <sub>sg</sub> | m <sub>ss</sub> | m <sub>sg</sub> | mss         | m <sub>sg</sub> | m <sub>ss</sub> |
| g                                                                 | 18,29           | 23,19                  | -13,38                 | -63,38          | -90,55          | -77,1           | -110,18     | -85,24          | -121,77         |
| max q                                                             | 18,45           | 19,79                  |                        |                 |                 |                 |             |                 |                 |
| min q                                                             |                 |                        | -11,12                 | -43,11          | -61,59          | -46,1           | -65,81      | -47,16          | -67,37          |
| Summe m:                                                          | 36,74           | 42,98                  | -24,50                 | -106,50         | -152,14         | -123,2          | -175,99     | -132,40         | -189,14         |

#### Randfeld in Richtung des freien Randes $l_1$ (m) = 6.75 $l_2$ (m) = 6.75

| ., (,               | 0,10                   | <i>i</i> <sub>2</sub> (iii) –   | 0,10                   |                 |                 |                 |                 |                 |
|---------------------|------------------------|---------------------------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $\varepsilon = 1,0$ |                        | $d_{\rm s}$ / min $l_1 = 0,067$ |                        | Tab.3.4:        | <i>C</i> =      | 1,00            |                 |                 |
| g (kN/m²) =         | 9,79                   | q (kN/m <sup>2</sup> ) = 4,88   |                        |                 |                 |                 |                 |                 |
|                     | Feldmor                | ente                            |                        | Stützmor        | nente           |                 |                 |                 |
|                     |                        |                                 |                        |                 | (5) Rano        | dstütze         | (6) 1. Ra       | Indstütze       |
| Tab.:               | 3.2                    | 3.2                             | 3.2                    | 3.2             | 3.5             |                 | 3.5             |                 |
|                     | äußerer                |                                 | innerer                |                 |                 |                 |                 |                 |
| Streifen:           | Gurt                   | Feld                            | Gurt                   | Feld            | Gurt            | Gurt            | Gurt            | Gurt            |
| Lastfall            | <b>k</b> FG            | <b>K</b> FF                     | <b>k</b> FG            | <b>k</b> sf     |                 | <b>k</b> ss     |                 | <b>k</b> ss     |
| g                   | 0,063                  | 0,045                           | 0,055                  | -0,033          |                 | -0,165          |                 | -0,198          |
| max q               | 0,097                  | 0,086                           | 0,090                  |                 |                 |                 |                 |                 |
| min q               |                        |                                 |                        | -0,045          |                 | -0,211          |                 | -0,225          |
| Formel:             | 3.6                    | 3.7                             | 3.6                    | 3.5             | 3.4             | 3.1             | 3.4             | 3.1             |
| Lastfall            | <i>m</i> <sub>FG</sub> | m <sub>FF</sub>                 | <i>m</i> <sub>FG</sub> | m <sub>SF</sub> | m <sub>sg</sub> | m <sub>ss</sub> | m <sub>sg</sub> | m <sub>ss</sub> |
| q                   | 28,10                  | 20,07                           | 24,53                  | -14,72          | -51,52          | -73,60          | -61,82          | -88,32          |
| max q               | 21,57                  | 19,12                           | 20,01                  | ·               |                 |                 | ·               |                 |
| min g               |                        |                                 | ,                      | -10,01          | -32,84          | -46,91          | -35,02          | -50,03          |
| Summe m:            | 49,67                  | 39,19                           | 44,54                  | -24,73          | -84,36          | -120,51         | -96,84          | -138,35         |

| 3.1 Gurtstreifen über der Stutze                               |
|----------------------------------------------------------------|
| 3.2 Randstützenanschnitt rechtw. zum Rand                      |
| 3.3 Eckstützenanschnitt rechtwinklig zum Ranc                  |
| 3.4 im restlichen Gurtstreifen                                 |
| 3.5 im Feldstreifen                                            |
| 3.6 im Gurtstreifen                                            |
| 3.7 im Feldstreifen                                            |
| <i>l</i> <sub>m1</sub> mittlere Stützweite benachbarter Felder |
| der betrachteten Richtung                                      |
| <i>l</i> <sub>m2</sub> mittlere Stützweite benachbarter Felder |
| rechtwinklig zur betrachteten Richtung                         |
| <i>l</i> <sub>1</sub> Stützweite der betrachteten Richtung     |
| <i>l</i> <sub>2</sub> Stützweite rechtwinklig zur betrachteten |
| Richtung                                                       |
| min l <sub>1</sub> kleinere Stützweite der betrachteten        |
| Richtung                                                       |
| <i>d</i> <sub>s</sub> Kantenlänge Quadratstütze = 0,45 m       |
| <i>c</i> Korrekturfaktor abhängig von $d_s$ und $\varepsilon$  |
| DAfSth-Heft [631]: Abschnitt 3 1 2 3                           |

DAfStb-Heft [631]: Abschnitt 3.1.2.2

- AfStb-Heft [631]: Abschnitt 3.1.2.3
- $\psi$  Korrekturbeiwert nach Bild 3.3
- b\_ Lasteinzugsbreite rechtwinklig zur
  - betrachteten Richtung

#### DAfStb-Heft [631]: Abschnitt 3.1.2.2

 $\varepsilon = Stützweitenverhältnis = 1$ 

siehe 2.2:  $g + q = e_{d}$ 

#### DAfStb-Heft [631]: Abschnitt 3.1.2.2

 $\varepsilon$  = Stützweitenverhältnis = 1

parallel zum freien Rand!

siehe 2.2:  $g + q = e_{d}$ 

| Randfeld rechtwinklig zum freien Rand |                      |                                        |                 |                        |                                 | Für Randstü                                | tzen                        |           |
|---------------------------------------|----------------------|----------------------------------------|-----------------|------------------------|---------------------------------|--------------------------------------------|-----------------------------|-----------|
| $l_1$ (m) =                           | l <sub>2</sub> (m) = | $\varepsilon$ 6,75 $\varepsilon$ = 1,0 |                 |                        | Ersatzrahmen Abschnitt 3.1.2.2: |                                            |                             |           |
| $d_{\rm s}$ / min $l_1$ =             | 0,067                | Tab. 3.4:                              | <i>c</i> =      | 1,00                   |                                 | Bild 3.3:                                  | ψ=                          | 0,701     |
| g (kN/m²) =                           | 9,79                 | q (kN/m <sup>2</sup> ) =               | 4,88            |                        |                                 |                                            | $\lambda =$                 | 0,468     |
|                                       | Feldm                | omente                                 | Stützmon        | nente                  |                                 | Gl. 3.8:                                   | <i>b</i> <sub>m</sub> (m) = | 3,16      |
|                                       |                      |                                        |                 | (5) + (6)<br>Randstütz | en                              | $I_{So}(M^4) =$                            | 0,00342                     |           |
| Tab.:                                 | 3.2                  | 3.2                                    | 3.2             | 3.5                    |                                 | $I_{Su}(m^4) =$                            | 0,00342                     |           |
| Streifen:                             | Feld                 | Gurt                                   | Feld            | Gurt                   | Gurt                            | $I_{\rm R}({\rm m}^4) =$                   | 0,00363                     |           |
| Lastfall                              | <b>k</b> FF          | <b>k</b> FG                            | <b>k</b> sf     |                        |                                 |                                            |                             |           |
| g                                     | 0,069                | 0,080                                  | -0,047          |                        |                                 | $h_0 = 3 \text{ m}$ $c_0 = 2,12$           |                             | 2,12      |
| max q                                 | 0,095                | 0,104                                  |                 |                        |                                 | $h_{\rm u} = 3 {\rm m}$ $c_{\rm u} = 2,12$ |                             | 2,12      |
| min q                                 |                      |                                        | -0,058          |                        |                                 |                                            |                             |           |
| GI.:                                  | 3.7                  | 3.6                                    | 3.5             | 3.4                    | 3.2                             | 3.13                                       | 3.9                         | 3.10      |
| Lastfall                              | m <sub>FF</sub>      | m <sub>FG</sub>                        | m <sub>SF</sub> | m <sub>sg</sub>        | m <sub>ss</sub>                 | $M_{R}^{(0)}$                              | $M_{So}$                    | $M_{Su}$  |
| g                                     | 30,78                | 35,68                                  | -20,96          |                        |                                 |                                            |                             |           |
| max q                                 | 21,12                | 23,12                                  | 0,00            |                        |                                 |                                            |                             |           |
| min q                                 | 0,00                 | 0,00                                   | -12,90          |                        |                                 |                                            |                             |           |
| Summe <i>m</i> :                      | 51,90                | 58,81                                  | -33,86          | -121,35                | -173,35                         | -263,56                                    | 106,61                      | -106,61   |
|                                       |                      |                                        |                 |                        |                                 |                                            |                             |           |
| Eckfeld in 2                          | z- und               | I y-Richtung                           | g               |                        |                                 | F                                          | ür Eckstüt                  | zen       |
| $l_1$ (m) = 6                         | 6,75                 | l <sub>2</sub> (m) = 6,75              | 5               |                        |                                 | E                                          | rsatzrahm                   | en Abschr |
|                                       | •                    |                                        | ~~              | T-40.4                 | -                               | 4.00                                       |                             |           |

| $l_1$ (m) = 6,75 $l_2$ (m) = 6,75                       |                        |                          |                 |              | Ersatzrahm      | en Abschnitt | 3.1.2.2:                                   |                          |                 |
|---------------------------------------------------------|------------------------|--------------------------|-----------------|--------------|-----------------|--------------|--------------------------------------------|--------------------------|-----------------|
| $\varepsilon = 1,0$ $d_{\rm s}/{\rm min} \ l_1 = 0,067$ |                        | Taf.3.4: <i>c</i> = 1,00 |                 | Bild 3.3:    | $\psi =$        | 0,900        |                                            |                          |                 |
| $g (kN/m^2) = 9,79$ $q (kN/m^2) = 9,79$                 |                        |                          |                 | =4,88        |                 |              | $\lambda = 0,733$                          |                          |                 |
|                                                         | Feldmomente            |                          |                 | Stützmomente |                 |              | min $l_2(m) = 3,375$                       |                          |                 |
|                                                         |                        |                          |                 |              | (E) Eckstütze   |              | $d_{\rm s}$ / min $l_2 = 0,133$            |                          |                 |
| Tab.:                                                   | 3.3                    | 3.3                      | 3.3             | 3.2          | 3.5             |              | Gl. 3.8:                                   | $b_{\rm m}({\rm m}) = 1$ | 2,48            |
|                                                         | äußerer                |                          | innerer         |              |                 |              |                                            |                          |                 |
| Streifen:                                               | Gurt                   | Feld                     | Gurt            | Feld         | Gurt            | Gurt         | $I_{\rm So}(\rm m^4) = 0,00342$            |                          |                 |
| Lastfall                                                | <b>k</b> FG            | <b>K</b> FF              | <b>k</b> FG     | <b>k</b> sf  |                 |              | $I_{Su}(m^4) = 0,00342$                    |                          |                 |
| g                                                       | 0,085                  | 0,070                    | 0,082           | -0,042       |                 |              | $I_{\rm R}({\rm m}^4) = 0,00284$           |                          |                 |
| max q                                                   | 0,105                  | 0,094                    | 0,102           |              |                 |              | $h_{\rm o} = 3 {\rm m}$ $c_{\rm o} = 2,70$ |                          | 2,70            |
| min q                                                   |                        |                          |                 | -0,049       |                 |              | $h_{\rm u} = 3 {\rm m}$ $c_{\rm u} = 2,70$ |                          | 2,70            |
| GI.:                                                    | 3.6                    | 3.7                      | 3.6             | 3.5          | 3.4             | 3.3          | 3.13                                       | 3.9                      | 3.10            |
| Lastfall                                                | <i>m</i> <sub>FG</sub> | m <sub>FF</sub>          | m <sub>FG</sub> | <b>m</b> sf  | m <sub>sg</sub> | mss          | $M_{R}^{(0)}$                              | Mso                      | M <sub>Su</sub> |
| g                                                       | 37,91                  | 31,22                    | 36,58           | -18,73       |                 |              |                                            |                          |                 |
| max q                                                   | 23,35                  | 20,90                    | 22,68           | 0,00         |                 |              |                                            |                          |                 |
| min q                                                   | 0,00                   | 0,00                     | 0,00            | -10,89       |                 |              |                                            |                          |                 |
| Summe m:                                                | 61.26                  | 52.12                    | 59.26           | -29.63       | -148.07         | -211.53      | -169.19                                    | 71.39                    | -71.39          |

Die Erfahrungen mit dem hier angewandten Näherungsverfahren nach DAfStb-Heft [631] zeigen, dass die an einem Ersatzrahmen ermittelten Einspannmomente der Rand- und Eckstützen rechtwinklig zum Plattenrand oft sehr weit auf der sicheren Seite liegen. Wesentliche Ursache hierfür ist die zu hoch angesetzte mitwirkende Plattenbreite für den Riegel des Ersatzrahmens. Weiterhin werden diese zu hohen Momente aus den Stützen bei der Bemessung der angrenzenden Plattenbereiche noch einmal mit einem Erhöhungsfaktor belegt. Es ergibt sich eine unwirtschaftliche Lösung für die Rand- und Eckstützen sowie für die angrenzenden Plattenbereiche.

Diskretisierungsverfahren (z. B. die FEM) für die Schnittgrößenermittlung erfassen die Steifigkeitsverhältnisse insgesamt besser und können realistischere Bemessungsergebnisse liefern.

| Abschnitt 3.1.2.2                                                                   |
|-------------------------------------------------------------------------------------|
| Momente in den Rand- und                                                            |
| Eckstützen von Flachdecken                                                          |
| $\varepsilon$ = Stützweitenverhältnis = 1                                           |
| $\psi = 0.5 + 3 \cdot (d_s / \min l_2)$                                             |
| $\lambda = 0.2 + 4 \cdot (d_s / \min l_2)$                                          |
| für $0,4 \le \lambda \le 1,0$                                                       |
| $b_{\rm m} = \lambda \cdot \min l_2$                                                |
| siehe 2.2: $g + q = e_{d}$                                                          |
|                                                                                     |
| Trägheitsmomente                                                                    |
| Ersatzrahmen:                                                                       |
| $I_{\rm So} = I_{\rm Su} = 0.45^4 / 12$                                             |
| $I_{\rm R} = b_{\rm m} \cdot 0,24^3 / 12$                                           |
| $c_{\rm o} = l_1 \cdot I_{\rm So} / (h_0 \cdot I_{\rm R})  {\rm Gl.}  (3.11)$       |
| $c_{\rm u} = l_1 \cdot I_{\rm Su} / (h_{\rm u} \cdot I_{\rm R})  {\rm Gl.}  (3.12)$ |
|                                                                                     |
| Lasteinzugsbreite:                                                                  |

DAfStb-Heft [631]:

 $b_{\rm l} = 6,75 \,\rm{m}$ 

DAfStb-Heft [631]: Abschnitt 3.1.2.2 Momente in den Rand- und Eckstützen von Flachdecken  $\varepsilon$  = Stützweitenverhältnis = 1  $\psi$  = 0,5 + 3 · ( $d_s$ / min  $l_2$ )  $\lambda$  = 0,2 + 4 · ( $d_s$ / min  $l_2$ ) für 0,4 ≤  $\lambda$  ≤ 1,0  $b_m$  =  $\lambda$  · min  $l_2$ 

siehe 2.2:  $g + q = e_{d}$ 

Trägheitsmomente Ersatzrahmen:  $I_{\rm S} = 0.45^4/12$  $I_{\rm R} = b_{\rm m} \cdot 0.24^3/12$ Lasteinzugsbreite:  $b_{\rm L} = 6.75/2$  m

Auf eine im Allgemeinen zu empfehlende detailliertere Untersuchung der Einspannmomente an den Rand- und Eckstützen wird im Rahmen dieses Beispiels verzichtet, da die prinzipiellen Nachweisabläufe des EC2-1-1 im Vordergrund stehen sollen.

Zweckmäßigerweise können die effektiven Biegesteifigkeiten der Stützen auch mit gegenüber Zustand I reduzierten Werten angesetzt werden. Dann werden geringere Endmomente an den Rand- und Eckstützen angezogen, die realistischer sind.

A4

# $\omega$ -Tafel, ohne Druckbewehrung, für Beton bis C50/60, B500, $\sigma_{sd}$ ansteigend bis $f_{td,cal}$



 $\mu_{\rm Eds} = \frac{M_{\rm Eds}}{b \cdot d^2 \cdot f_{\rm cd}}$  $=\frac{M_{\rm Ed}-N_{\rm Ed}\cdot z_{\rm s1}}{b\cdot d^2\cdot \alpha_{\rm cc}\cdot f_{\rm ck}/\gamma_{\rm C}}$ 

erforderliche Biegezugbewehrung:

$$A_{s1} = \frac{\omega_1 \cdot b \cdot d \cdot f_{cd} + N_{Ed}}{\sigma_{sd}}$$

| <b></b>           |                    | <i>.</i>          | sd sd                           |                      |                  |                   |
|-------------------|--------------------|-------------------|---------------------------------|----------------------|------------------|-------------------|
| $\mu_{Eds}$       | ω <sub>1</sub>     | $\xi = x/d$       | $\zeta = z/d$                   | <b>E</b> c2          | <b>E</b> s1      | $\sigma_{ m sd}$  |
|                   |                    |                   |                                 | %•                   | %•               | N/mm <sup>2</sup> |
| 0,01              | 0,0101             | 0,030             | 0,990                           | -0,77                | 25,00            | 456,5             |
| 0,02              | 0,0203             | 0,044             | 0,985                           | -1,15                | 25,00            | 456,5             |
| 0,03              | 0,0306             | 0,055             | 0,980                           | -1,46                | 25,00            | 456,5             |
| 0,04              | 0,0410             | 0,066             | 0,976                           | -1,76                | 25,00            | 456,5             |
| 0,05              | 0,0515             | 0,076             | 0,971                           | -2,06                | 25,00            | 456,5             |
| 0,06              | 0,0621             | 0,086             | 0,967                           | -2,37                | 25,00            | 456,5             |
| 0,07              | 0,0728             | 0,097             | 0,962                           | -2,68                | 25,00            | 456,5             |
| 0,08              | 0,0836             | 0,107             | 0,956                           | -3,01                | 25,00            | 456,5             |
| 0,09              | 0,0946             | 0,118             | 0,951                           | -3,35                | 25,00            | 456,5             |
| 0,10              | 0,1058             | 0,131             | 0,946                           | -3,50                | 23,29            | 454,9             |
| 0,11              | 0,1170             | 0,145             | 0,940                           | -3,50                | 20,71            | 452,4             |
| 0,12              | 0,1285             | 0,159             | 0,934                           | -3,50                | 18,55            | 450,4             |
| 0,13              | 0,1401             | 0,173             | 0,928                           | -3,50                | 16,73            | 448,6             |
| 0,14              | 0,1519             | 0,188             | 0,922                           | -3,50                | 15,16            | 447,1             |
| 0,15              | 0,1638             | 0,202             | 0,916                           | -3,50                | 13,80            | 445,9             |
| 0,16              | 0,1759             | 0,217             | 0,910                           | -3,50                | 12,61            | 444,7             |
| 0,17              | 0,1882             | 0,232             | 0,903                           | -3,50                | 11,55            | 443,7             |
| 0,18              | 0,2007             | 0,248             | 0,897                           | -3,50                | 10,62            | 442,8             |
| 0,19              | 0,2134             | 0,264             | 0,890                           | -3,50                | 9,78             | 442,0             |
| 0,20              | 0,2263             | 0,280             | 0,884                           | -3,50                | 9,02             | 441,3             |
| 0,21              | 0,2395             | 0,296             | 0,877                           | -3,50                | 8,33             | 440,6             |
| 0,22              | 0,2529             | 0,312             | 0,870                           | -3,50                | 7,71             | 440,1             |
| 0,23              | 0,2665             | 0,329             | 0,863                           | -3,50                | 7,13             | 439,5             |
| 0,24              | 0,2804             | 0,346             | 0,856                           | -3,50                | 6,60             | 439,0             |
| 0,25              | 0,2946             | 0,364             | 0,849                           | -3,50                | 6,12             | 438,5             |
| 0,26              | 0,3091             | 0,382             | 0,841                           | -3,50                | 5,67             | 438,1             |
| 0,27              | 0,3239             | 0,400             | 0,834                           | -3,50                | 5,25             | 437,7             |
| 0,28              | 0,3391             | 0,419             | 0,826                           | -3,50                | 4,86             | 437,3             |
| 0,29              | 0,3546             | 0,438             | 0,818                           | -3,50                | 4,49             | 437,0             |
| 5.4 (NA.5): Linea | r-elastische Berec | chnung Biegebaute | eile $\xi > 0,45 \rightarrow D$ | )<br>ruckbewehrung e | mpfehlenswert →  | A5                |
| 0,30              | 0,3706             | 0,458             | 0,810                           | -3,50                | 4,15             | 436,7             |
| 0,31              | 0,3869             | 0,478             | 0,801                           | -3,50                | 3,82             | 436,4             |
| 0,32              | 0,4038             | 0,499             | 0,793                           | -3,50                | 3,52             | 436,1             |
| 0,33              | 0,4211             | 0,520             | 0,784                           | -3,50                | 3,23             | 435,8             |
| 0,34              | 0,4391             | 0,542             | 0,774                           | -3.50                | 2,95             | 435.5             |
| 0,35              | 0,4576             | 0,565             | 0,765                           | -3.50                | 2,69             | 435.3             |
| 0,36              | 0,4768             | 0,589             | 0,755                           | -3,50                | 2.44             | 435.0             |
| 0.37              | 0.4968             | 0.614             | 0.745                           | -3.50                | 2.20             | 434.8             |
| Bemessungswer     | t der Fließgrenze  | des Betonstahls w | ird unterschritten              | → Druckbewehrur      | ng empfehlenswei | rt → A5           |

A5  $\omega$ -Tafel, mit Druckbewehrung, für  $\xi_{lim} = 0,45$ , für Beton bis C50/60, B500,  $\sigma_{sd}$  ansteigend bis  $f_{td,cal}$ 



#### bezogenes Moment:

 $\mu_{\rm Eds} = \frac{M_{\rm Eds}}{b \cdot d^2 \cdot f_{\rm cd}} = \frac{M_{\rm Ed} - N_{\rm Ed} \cdot z_{\rm s1}}{b \cdot d^2 \cdot \alpha_{\rm cc} \cdot f_{\rm ck} / \gamma_{\rm C}}$ (Druckkraft negativ)  $A_{\rm s1} = \frac{\omega_1 \cdot b \cdot d \cdot f_{\rm cd} + N_{\rm Ed}}{\sigma_{\rm s1d}}$  $A_{\rm s2} = \frac{\omega_2 \cdot b \cdot d \cdot f_{\rm cd}}{\sigma_{\rm s2d}}$ 

erforderliche Druckbewehrung:

erforderliche Biegezugbewehrung:

|             | $\sigma_{ m s1d}=436,8~ m N/mm^2$             |                |                                    |        |                                    |        |                                      |            |  |
|-------------|-----------------------------------------------|----------------|------------------------------------|--------|------------------------------------|--------|--------------------------------------|------------|--|
|             | $d_2 / d = 0.05$                              |                | $d_2 / d = 0,10$                   |        | $d_2 / d = 0,15$                   |        | $d_2 / d = 0,20$                     |            |  |
|             | $\sigma_{\rm s2d} = -435,7$ N/mm <sup>2</sup> |                | $\sigma_{ m s2d}=-435,3~ m N/mm^2$ |        | $\sigma_{ m s2d}=-434,9~ m N/mm^2$ |        | $\sigma_{\! m s2d}=-388,9~ m N/mm^2$ |            |  |
| $\mu_{Eds}$ | <b>W</b> 1                                    | ω <sub>2</sub> | <b>W</b> 1                         | ωz     | <b>W</b> 1                         | ωz     | <b>W</b> 1                           | <i>W</i> 2 |  |
| 0,30        | 0,3684                                        | 0,0041         | 0,3686                             | 0,0043 | 0,3689                             | 0,0046 | 0,3692                               | 0,0049     |  |
| 0,31        | 0,3789                                        | 0,0146         | 0,3797                             | 0,0155 | 0,3806                             | 0,0164 | 0,3817                               | 0,0174     |  |
| 0,32        | 0,3895                                        | 0,0252         | 0,3908                             | 0,0266 | 0,3924                             | 0,0281 | 0,3942                               | 0,0299     |  |
| 0,33        | 0,4000                                        | 0,0357         | 0,4020                             | 0,0377 | 0,4042                             | 0,0399 | 0,4067                               | 0,0424     |  |
| 0,34        | 0,4105                                        | 0,0462         | 0,4131                             | 0,0488 | 0,4159                             | 0,0517 | 0,4192                               | 0,0549     |  |
| 0,35        | 0,4210                                        | 0,0567         | 0,4242                             | 0,0599 | 0,4277                             | 0,0634 | 0,4317                               | 0,0674     |  |
| 0,36        | 0,4316                                        | 0,0673         | 0,4353                             | 0,0710 | 0,4395                             | 0,0752 | 0,4442                               | 0,0799     |  |
| 0,37        | 0,4421                                        | 0,0778         | 0,4464                             | 0,0821 | 0,4512                             | 0,0869 | 0,4567                               | 0,0924     |  |
| 0,38        | 0,4526                                        | 0,0883         | 0,4575                             | 0,0932 | 0,4630                             | 0,0987 | 0,4692                               | 0,1049     |  |
| 0,39        | 0,4631                                        | 0,0989         | 0,4686                             | 0,1043 | 0,4748                             | 0,1105 | 0,4817                               | 0,1174     |  |
| 0,40        | 0,4737                                        | 0,1094         | 0,4797                             | 0,1155 | 0,4865                             | 0,1222 | 0,4942                               | 0,1299     |  |
| 0,41        | 0,4842                                        | 0,1199         | 0,4908                             | 0,1266 | 0,4983                             | 0,1340 | 0,5067                               | 0,1424     |  |
| 0,42        | 0,4947                                        | 0,1304         | 0,5020                             | 0,1377 | 0,5101                             | 0,1458 | 0,5192                               | 0,1549     |  |
| 0,43        | 0,5052                                        | 0,1410         | 0,5131                             | 0,1488 | 0,5218                             | 0,1575 | 0,5317                               | 0,1674     |  |
| 0,44        | 0,5158                                        | 0,1515         | 0,5242                             | 0,1599 | 0,5336                             | 0,1693 | 0,5442                               | 0,1799     |  |
| 0,45        | 0,5263                                        | 0,1620         | 0,5353                             | 0,1710 | 0,5454                             | 0,1811 | 0,5567                               | 0,1924     |  |
| 0,46        | 0,5368                                        | 0,1725         | 0,5464                             | 0,1821 | 0,5571                             | 0,1928 | 0,5692                               | 0,2049     |  |
| 0,47        | 0,5473                                        | 0,1831         | 0,5575                             | 0,1932 | 0,5689                             | 0,2046 | 0,5817                               | 0,2174     |  |
| 0,48        | 0,5579                                        | 0,1936         | 0,5686                             | 0,2043 | 0,5806                             | 0,2164 | 0,5942                               | 0,2299     |  |
| 0,49        | 0,5684                                        | 0,2041         | 0,5797                             | 0,2155 | 0,5924                             | 0,2281 | 0,6067                               | 0,2424     |  |
| 0,50        | 0,5789                                        | 0,2146         | 0,5908                             | 0,2266 | 0,6042                             | 0,2399 | 0,6192                               | 0,2549     |  |
| 0,51        | 0,5895                                        | 0,2252         | 0,6020                             | 0,2377 | 0,6159                             | 0,2517 | 0,6317                               | 0,2674     |  |
| 0,52        | 0,6000                                        | 0,2357         | 0,6131                             | 0,2488 | 0,6277                             | 0,2634 | 0,6442                               | 0,2799     |  |
| 0,53        | 0,6105                                        | 0,2462         | 0,6242                             | 0,2599 | 0,6395                             | 0,2752 | 0,6567                               | 0,2924     |  |
| 0,54        | 0,6210                                        | 0,2567         | 0,6353                             | 0,2710 | 0,6512                             | 0,2869 | 0,6692                               | 0,3049     |  |
| 0,55        | 0,6316                                        | 0,2673         | 0,6464                             | 0,2821 | 0,6630                             | 0,2987 | 0,6817                               | 0,3174     |  |

A6 Interaktionsdiagramm für den symmetrisch bewehrten Rechteckquerschnitt (C12/15 bis C50/60;  $d_1 / h = 0,10$ ; B500;  $\gamma_{s} = 1,15$ ) [12]







A8 Allgemeines Bemessungsdiagramm für Rechteckquerschnitte (C12/15 bis C50/60) [12]

