1 Aufgaben

B1 Arithmetik reeller Zahlen

 $\begin{array}{llll} \text{Mengen:} & \mathbb{R} = (-\infty, \infty) \text{ - reelle,} & \mathbb{R}^+ = (0, \infty) \text{ - positive reelle,} & \mathbb{N} = \{1, 2, 3, \ldots\} \text{ - natürliche,} \\ \mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\} \text{ - ganze Zahlen} & \mathbb{N}_0 = \mathbb{N} \cup \{0\} \end{array}$ $\text{Intervalle:} & x \in (-\infty, a) \text{ bedeutet} & x < a & x \in (a, \infty) \text{ bedeutet} & a < x \\ & x \in (a, b) & \text{bedeutet} & a < x < b & x \in [a, b] & \text{bedeutet} & a \le x \le b \\ & x \in [a, b) & \text{bedeutet} & a \le x \le b & x \in (a, b] & \text{bedeutet} & a < x \le b \end{array}$

Definitionen

Begriff	Definition	
Summenzeichen	$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + a_{m+2} + \ldots + a_n,$	$m, n \in \mathbb{Z}, m \le n, \text{ oft } m = 0, a_i \in \mathbb{R}$
n-te Potenz	$a^n = a \cdot a \cdot \dots \cdot a,$	$a \in \mathbb{R}$ - Basis, $n \in \mathbb{N}$ - Exponent
n-te Wurzel	$\begin{vmatrix} a = \sqrt[n]{b}, \text{ wenn } a^n = b, \\ \sqrt[n]{1} = 1, \sqrt[n]{0} = 0, \sqrt[1]{a} = a \end{vmatrix}$	$a, b \ge 0, n \in \mathbb{N}$ $\sqrt[2]{a} = \sqrt{a} = a^{1/2}$
Fakultät	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n,$	$n \in \mathbb{N}$ $0! = 1$
Binomialkoeffizient	$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{1 \cdot 2 \cdots k} = \frac{n!}{k! (n-k+1)}$	$ \frac{1}{(k)!}, \ n, k \in \mathbb{N}_0 \qquad \binom{n}{k} = 0, \ k > n $
Symmetrie, Summe	$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = \binom{n}{n-k}$	$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Gesetze und Rechenregeln

Name	Gesetz
Kommutativität	a+b=b+a
Assoziativität	(a+b)+c=a+(b+c)
Kommutativität	ab = ba
Assoziativität	(ab)c = a(bc)
Distributivität	a(b+c) = ab + ac
Ausmultiplizieren	$(a+b)c = ac + bc, \ a(b-c) = ab - ac, \ (a+b)(c+d) = ac + ad + bc + bd$
Ausklammern	ac + bc = (a + b)c, $ab + ac = a(b + c)$, $ac - bc = (a - b)c$, $ab - ac = a(b - c)$
1. Binomische Formel	$(a+b)^2 = a^2 + 2ab + b^2$
2. Binomische Formel	$(a-b)^2 = a^2 - 2ab + b^2$
3. Binomische Formel	$(a+b)(a-b) = a^2 - b^2$
Binomischer Lehrsatz	$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \qquad (a-b)^{n} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} a^{n-k} b^{k}$

10 1 Aufgaben

Potenz- und Wurzelgesetze

Name	Gesetz, $a, b \in I$	$\mathbb{R}^+, r, s \in \mathbb{R}, m, n, k, l \in$	N
Potenzgesetze	Gleiche Basen	$a^r a^s = a^{r+s}$	$a^r/a^s = a^{r-s}$
	Produkt, Quotient	$(ab)^s = a^s b^s$	$(a/b)^s = a^s/b^s$
	Potenz	$\left(a^{r}\right)^{s} = \left(a^{s}\right)^{r} = a^{rs}$	
	Negativer Exponent	$a^{-s} = 1/a^s = (1/a)^s$	
Wurzelgesetze	Wurzel, Potenz	$\sqrt[n]{a^n} = a, (\sqrt[n]{a})^n = a,$	$\sqrt[n]{a^{mn}} = a^m$
	Produkt, Quotient	$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$	$\sqrt[n]{a/b} = \sqrt[n]{a}/\sqrt[n]{b}$
	Rationaler Exponent	$\sqrt[mn]{a} = a^{\frac{1}{mn}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
	Gleiche Basen	$a^{\frac{m}{n}} a^{\frac{k}{l}} = a^{\frac{m}{n} + \frac{k}{l}}$	$a^{\frac{m}{n}}/a^{\frac{k}{l}} = a^{\frac{m}{n} - \frac{k}{l}}$
	Gleicher Exponent	$(ab)^{\frac{m}{n}} = a^{\frac{m}{n}} b^{\frac{m}{n}}$	$(a/b)^{\frac{m}{n}} = a^{\frac{m}{n}} / b^{\frac{m}{n}}$

Bruchrechnung

Bezeichnung	Rechenregel, a, b, c, d ,	$e \in \mathbb{R}$	Bedingung
Gleichheit Erweitern, Kürzen	$\frac{a}{b} = \frac{c}{d} \Longleftrightarrow a \cdot d = b \cdot c$	$\frac{a}{b} = \frac{a \cdot e}{b \cdot e} \qquad \frac{a \cdot e}{b \cdot e} = \frac{a}{b}$	$b,d,e \neq 0$
Multiplikation, Division	$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$	$\frac{a}{b} : \frac{c}{d} = \frac{a \cdot d}{b \cdot c}$	$b, c, d \neq 0$
Addition, Subtraktion	$\frac{a}{b} \pm \frac{c}{b} = \frac{a \pm c}{b}$	$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm b \cdot c}{b \cdot d}$	$b, d \neq 0$

Axiome der Ordnung

Name	Gesetz
Konnexität	Zwischen zwei Zahlen $a,b\in\mathbb{R}$ besteht genau eine der Beziehungen
	a < b, a > b, a = b.
Transitivität	Aus $a < b$ und $b < c$ folgt $a < c$.
Monotonie der Addition	Aus $a < b$ folgt $a + c < b + c$.
Monotonie der	Aus $a < b$ und $c > 0$ folgt $ac < bc$.
Multiplikation	

Rechenregeln für Ungleichungen

Regel, wenn $a < b$ und $c < d$	Interpretation
-a > -b	Wird eine Ungleichung mit -1 multipliziert, so kehrt sich ihr Relationszeichen um.
a+c < b+d	Ungleichungen mit demselben Relationszeichen dürfen addiert werden.
Für $a, d > 0$ folgt $ac < bd$.	Ungleichungen mit demselben Relationszeichen dürfen multipliziert werden, wenn in einer Ungleichung beide Seiten positiv sind und in der anderen die größere.
Für $a > 0$ folgt $1/a > 0$.	Das Reziproke einer positiven reellen Zahl ist ebenfalls positiv.

Addition und Multiplikation

- 1.1 Die Klammern sind aufzulösen:
 - **a)** p+(q+r) **b)** p+(q-r) **c)** p-(q+r)
 - **d)** p-(q-r) **e)** p+(q-r+s)
 - **f)** (p+q)-(r+s-u-v)
 - **g)** p-(q-r)+(s-u)-(v+w)
 - **h)** p-(q-r+s)-(u-v+w)
- **1.2** Die Terme sind zusammenzufassen:
 - a) (3x+5y)-(x+2y)
 - **b)** (7m+5n)-(4m+2n)
 - c) (12a+19b)-(8a+17b)
 - **d)** (20x+13y)-(15x+8y)
 - e) (27m+18n)-(5n-12m)
 - f) (33p-27q)+(15q-18p)
 - **g)** (15x-38z)-(25z+10x)
 - **h)** $(5\frac{3}{4}q+7\frac{1}{2}r)-(2\frac{3}{4}q+1\frac{1}{2}r)$
- 1.3 Die Klammern sind aufzulösen und die Terme sind zusammenzufassen:
 - a) $\langle (6x+3y)+(2y+9z)\rangle (2x+3z)$
 - **b)** $\langle (15p-8q)+(11r+9s)\rangle \langle -(8p+2q)+(6r-5s)\rangle$
 - c) $\langle (17a-12b)-(8c+7d)\rangle \langle (5c-4d) (14a+9b)\rangle$
 - d) $\langle (8r+5s)+(-7t-10u)\rangle \langle (2s+7r) + (-3u+2t)\rangle$
 - e) (((3a-4b)-2x)-(3x+3b)-(4x-2a+b))
 - f) $17p \{13r \langle 6q + (5r 9p) \rangle + \langle 14q (7p + 8r) \rangle \} \{11r \langle 10q (12p 3q) \rangle \langle 15r + (4p 16q) \rangle \}$
 - g) $2.3x \{0.4y + (5.35x 2.6y) (3.45x (1.8x 4.35y) 0.5x) + (3.15y 4.25x)\} (0.75y (4.5x + 0.8y) (2.55y 2.85x))$

- 1.4 Die Klammern sind auszumultiplizieren und die Terme sind zusammenzufassen:
 - a) 35(p+x+y)+37(x+y+z)+39(y+z+p) +41(z+p+y)
 - **b)** (x+y)z+x(y+z)+(x+z)y
 - c) $15(a+b+c)-(b+c+d)\cdot 19-14(c+d+a) + (a+b+d)\cdot 12$
 - **d)** (x+y)z+(y+z)u-x(y+z)-y(z+u)
 - e) (a-b)c+(c-a)b+a(b+c)
 - f) (m+n)x-(m-x)n-m(n+x)
 - g) $(7a 4b + 5c) \cdot 12 + (2b 3c 4a) \cdot 7$ $-(6c + a - 8b) \cdot 9$
 - **h)** $12\{p-(q+r)\}$ **i)** $n\{(u+v)-(v-y)\}$
 - **j)** $7\{(a-b)-(a-c)\}$
- 1.5 Wie wird eine Summe mit einer Summe multipliziert? Die Klammern sind auszumultiplizieren und die Terme sind so weit wie möglich zusammenzufassen:
 - a) (a+b)(m+n)
 - **b)** (p+q+r)(x+y+z)
 - c) (p+q+r)(p+q-r)
 - **d)** (p+q-r)(p-q+r)
 - e) (p+q+r)(-p+q+r)
 - f) (p-q+r)(-p+q-r)
 - g) (a+b)(b-c)+(b+c)(c-a)-(a+c)(a-b)
 - h) (x-y+z)(x+y-z) + (y-z+x)(y+z-x) + (z-x+y)(z+x-y)
- **1.6** Folgende Terme sind durch Ausklammern der gleichen Faktoren zusammenzufassen:
 - a) (a+b)x+(a+b)y+a(2x-y)+b(2x-y)
 - **b)** (7a-3b)(x+y)-(5a-7b)(x+y)-(2a+4b)(x-y)
 - c) (9a-7b+3c)(7a-13b+8c) + (4a+5b-3c)(9a-7b+3c) (7a-13b+8c)(4a+b-8c) (4a+b-8c)(4a+5b-3c)

12 1 Aufgaben

1.7 Mithilfe der binomischen Formeln ist zu berech-

- a) (x+y)(x+y) b) $(7x+5)^2$
- c) $(2m+\frac{1}{2}n)^2$ d) (a+1)(a-1)
- e) $(3a-4)^2$ f) (1+x)(1-x)
- **g)** (a+b+c)(a+b-c)
- **h)** (a-b+c+d)(a-b-c-d)
- i) $(x^2+xy+y^2)(x^2-xy+y^2)$
- i) $(a^3-a^2b+ab^2-b^3)(a+b)$

1.8 Die Terme sind so weit wie möglich zu kürzen und zusammenzufassen:

- a) $\frac{18a}{3} \frac{28a}{7} + \frac{5ab}{b}$
- $\mathbf{b)} \ \frac{12ab^2 18abc + 30ac^2}{6a}$
- c) $\frac{20pq 12qs}{4\pi} + \frac{15ts 20tu}{5}$
- d) $\frac{78m^2p + 60mnp + 102mp^2}{100mp^2}$
- e) $\frac{30y^2x + 10x^2y}{5x \cdot 2y} \cdot \frac{35x^2y 105xy^2}{7x \cdot 5y}$
- f) $\frac{30xz+24yz}{5x} \frac{35xy-15xz}{5x} + \frac{7yz-21xy}{7y}$

1.9 Die Brüche sind gleichnamig zu machen und zu addieren:

- a) $m + \frac{3mn}{m-n}$ b) $\frac{a^2}{a+b} + b$
- c) $\frac{(p+q)^2}{4na} 1$ d) $\frac{x}{ab} \frac{y}{ac} \frac{z}{bc}$
- e) $\frac{3(2a-3b)}{3} \frac{2(3a-5b)}{3} + \frac{5(a-b)}{3}$
- f) $\frac{a(3b-2c)}{6bc} \frac{b(4a-5c)}{10ac} + \frac{8a^2+3b^2}{6ab}$

1.10 Folgende Produkte sind zu berechnen:

- a) $\left(\frac{p}{n} + \frac{q}{m}\right) \cdot mn$ b) $\left(\frac{a}{p^2q} \frac{b}{pq^2}\right) \cdot mn$
- c) $\frac{2a-3b}{2a-3b} \cdot (2a^2b+3ab^2)$
- d) $\frac{12(a+b)(m-n)}{5(a-b)(m+n)} \cdot (a^2-b^2)(m^2-n^2)$

1.11 Folgende Quotienten sind zu berechnen:

- a) $42xy: \frac{6x^2y^2}{7x}$ b) $35a^2b^2c^2: \frac{7a^2bc^2}{4d^2}$
- c) $32(m^2-n^2): \frac{4(m-n)}{n+a}$
- **d)** $7(4a^2+4ab+b^2): \frac{3(2a+b)}{2a+b}$
- e) $\left(\frac{x^2}{y} + \frac{y^2}{x}\right) : \left(\frac{1}{x} + \frac{1}{y}\right)$ f) $\frac{a+b}{a-b} + \frac{a-b}{a+b}$
- g) $\frac{x-1}{2x+2} \frac{3x-4}{3x+3} + \frac{2x-1}{6x+6}$
- h) $\frac{9}{3x+x^2} + \frac{x^2}{9-3x} + \frac{9}{9-x^2}$

1.12 Die Terme sind zu multiplizieren und so weit wie möglich zu kürzen:

- **a)** $\frac{8ap}{5r^2} \left(\frac{2p^2q}{3r} + \frac{5q^2r}{4p} \frac{10r^2p}{3q}\right) \cdot \frac{12a}{5pqr}$
- b) $\frac{m^2 n^2}{2mn} \left(\frac{m+n}{m-n} \frac{m-n}{m+n} \right) 1$

1.13 Folgende Terme sind mithilfe der binomischen Formeln in Produkte umzuformen:

- a) $a^2 6a + 9$
- **b)** $x^2 + 2x + 1$
- c) $36x^2 25y^2$
- d) $(a-b)^2-x^2$
- e) $81a^2 16(2a 3x)^2$ f) $a^2 + 2ab + b^2 c^2$
- g) $9x^2-4y^2+4yz-z^2$ h) x^4+x^3+x+1

1.14 Zähler und Nenner der Brüche sind in Produkte umzuformen. Die Brüche sind danach zu kürzen:

- a) $\frac{a^2+ab}{a^2-ab}$ b) $\frac{am-bm}{bn-an}$ c) $\frac{7a^2b-7ab^2}{7a^2c-7ac^2}$
- d) $\frac{ax-a}{b-bx}$ e) $\frac{a^4-b^4}{a^2-b^2}$ f) $\frac{m^2-2mn+n^2}{n^2-m^2}$
- g) $\frac{a^4-b^4}{a^3-b^3}$ h) $\frac{a^4-b^4}{a^3+b^3}$ i) $\frac{a^4+b^4}{a^3+b^3}$

Potenz- und Wurzelrechnung

- 1.15 Potenzen mit gleichen Basen sind zusammenzufassen:

 - a) $p^n \cdot p^n$ b) $b^7 \cdot b^{2-x}$ c) $e^{x-7} \cdot e^{5+x}$
 - d) $k^{m+n} \cdot k^{1-m}$ e) $r^n \cdot r^{n-1} \cdot r^{9-2n}$
 - f) $\frac{3}{4}a^nbx^3 \cdot \frac{4}{5}ab^mx^4 \cdot \frac{5}{6}a^2x^p$
 - g) $(a^5+a^2)(a^3-a)$ h) $(y^9+y^4)(y^6-y)$
 - i) $(a^4 a^2b^2 + b^4)(a^2 + b^2)$ j) $\frac{a^{x-1}}{a}$
- k) $\frac{x^2}{x^{n-2}}$ l) $\frac{a^{3+x}}{a^{x-3}}$ m) $\frac{a^{m+1}b^{n+1}}{a^mb^n}$
- $\mathbf{n)} \ \ \frac{a^5(x-y)^2}{a(y-x)^5} \quad \mathbf{o)} \ \ \frac{a^{2x-3y}a^{3y-5}}{a^{5-3x}a^{7-2y}} : \frac{a^{5x+3y-10}}{a^{x+y+10}}$
- 1.16 In folgenden Termen sind die Brüche gleichnamig zu machen und dann zu vereinigen:
 - a) $\frac{1}{x^7} + \frac{1}{x^6} + \frac{1}{x}$ b) $\frac{1}{x^3} + \frac{1-x}{x^4}$
 - c) $\frac{1-2x^2}{x^p} + \frac{2-3x^2}{x^{p-2}} + \frac{3}{x^{p-4}}$
 - **d)** $\frac{x^n}{(x+y)^n} + \frac{2x^{n-1}}{(x+y)^{n-1}} \frac{x^{n-2}}{(x+y)^{n-2}}$
- 1.17 Die Potenzen sind so weit wie möglich zusammenzufassen
 - $\mathbf{a)} \quad \frac{a^{5p-4q}}{b^{2q-5p}} \cdot \frac{b^{3p-7q}}{a^{5q-3p}} \ \mathbf{b)} \quad \frac{p^{12x+3y}}{q^{2y-4x}} : \frac{p^{2x-8y}}{q^{6x+13y}}$
 - c) $\left(\frac{8xy^2}{3z^3}\right)^n : \left(\frac{2x^2y}{9z^2}\right)^n$ d) $\left(\frac{a^2b^3}{x^3y^4}\right)^5$
 - e) $\left(\frac{a+b}{x+y}\right)^3 \cdot \left(\frac{a-b}{x-y}\right)^3 \cdot \left(\frac{x^2-y^2}{b^2-a^2}\right)^2$
 - $\mathbf{f)} \quad \left(\frac{4a^{n-1}b^3c^{3-x}}{9x^2u^{3n-2}z^6}\right)^2 : \left(\frac{2a^2b^2c^{2-x}}{3xu^{2n-1}z^4}\right)^3$
- **1.18** Mithilfe der binomischen Formeln ist zu poten-

 - a) $(a^2-b)^3$ b) $(x+1)^3+(x-1)^3$

 - c) $(a-b)^5$ d) $(2x+3)^5-(2x-3)^5$
 - e) $(a^m a^n)^2$ f) $(x + y)^4 (a x)^4$

- **1.19** Folgende Polynomdivisionen sind auszuführen:
 - a) (6am 9an 4bm + 6bn) : (3a 2b)
 - **b)** $(x^2-2x-15):(x-5)$
 - c) $(a^3 a^2b + 2b^3) : (a+b)$
 - d) $(a^5 + b^5) : (a + b)$
- **1.20** Die Terme sind so weit wie möglich zusammenzufassen:
 - a) $(\sqrt{x+y} + \sqrt{x-y})^2$
 - b) $\left(\sqrt{\frac{a-x}{x-b}}-\sqrt{\frac{x-b}{a-x}}\right)^2$
 - c) $\sqrt[3]{x+\sqrt{x^2-1}} \cdot \sqrt[3]{x-\sqrt{x^2-1}}$
 - d) $(a+b)\sqrt{\frac{ax^2-bx^2}{9a^2+18ab+9b^2}}$
 - e) $\sqrt{x\sqrt{x^{-1}\sqrt{x^{-1}}}}$
- **1.21** In folgenden Termen sind die Wurzeln in den Nennern zu beseitigen:
 - a) $\frac{a}{a+\sqrt{a}}$ b) $\frac{1}{\sqrt{x}-\sqrt{y}}$ c) $\frac{a\sqrt{x}-b\sqrt{y}}{c\sqrt{x}-d\sqrt{y}}$
 - d) $\frac{2\sqrt{15}}{\sqrt{3} + \sqrt{5} + 2\sqrt{2}}$ e) $\sqrt{\frac{a + \sqrt{x}}{a \sqrt{x}}}$
 - f) $\frac{a+x+\sqrt{a^2+x^2}}{a+x-\sqrt{a^2+x^2}}$

Ungleichungen

- **1.22** Zu bestimmen sind alle reellen Zahlen x, die die folgenden Ungleichungen erfüllen:

- a) 3-x < 5-2x b) 2x-17 < 13+6xc) $\frac{5x}{3}-4 < x+6$ d) $\frac{5}{x}-4 > \frac{4}{x}-5$
- e) (x-2)(x+5) > 0
- **1.23** Für welche reellen Zahlen a hat die folgende Ungleichung reelle Lösungen x? Die Lösungsmenge ist anzugeben.

$$\frac{x^2+1}{4} < a^2$$

B2 Funktionen einer Veränderlichen

Definitionen

 $f:D_f\to W_f$ - reelle Funktion, $D_f\subseteq\mathbb{R}$ - Definitions bereich, $W_f\subseteq\mathbb{R}$ - Wertebereich, $I\subseteq D_f$ - Intervall

Begriff	Definition
Nullstelle $x_{\rm N} \in D_f$	$f(x_{\rm N}) = 0$
Monotonie steigend (fallend)	Für alle $x_1 < x_2$ folgt $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2)), x_1, x_2 \in I$.
Strenge Monotonie steigend (fallend)	Für alle $x_1 < x_2$ folgt $f(x_1) < f(x_2)$ $(f(x_1) > f(x_2)), x_1, x_2 \in I$.
Beschränktheit nach oben (unten)	Es gibt eine Zahl $S(s) \in \mathbb{R}$, sodass für alle $x \in I$ gilt
	$f(x) \leq S$ $(f(x) \geq s)$. $S(s)$ - obere (untere) Schranke
Unbeschränktheit nach oben (unten)	f ist auf I nicht nach oben (unten) beschränkt.
Supremum $\sup f(x)$	kleinste aller oberen Schranken auf I
Infimum $\inf_{x \in I} f(x)$	größte aller unteren Schranken auf ${\cal I}$
Gerade (ungerade) Funktion	Für alle $x \in D_f$ gilt $f(-x) = f(x)$ $(f(-x) = -f(x)),$
, - ,	$D_f = (-a, a), a \in \mathbb{R}, \text{ oder } D_f = \mathbb{R}.$
Periodizität mit der Periode $p \in \mathbb{R}$	Für alle $x \in D_f$ gilt $x + p \in D_f$ und $f(x) = f(x + p)$.
Umkehrfunktion $f^{-1}: W_f \to D_f$	f^{-1} ordnet jedem Funktionswert sein Argument zu, wenn f je-
	dem Argument genau einen Funktionswert zuordnet.

Elementare Funktionen

Lineare Funktion	f(x) = ax + b	$f: \mathbb{R} \to \mathbb{R}$
b x_N i x	Steigung y -Achsabschnitt Nullstelle Proportionalität	$a \in \mathbb{R}, a \neq 0$ $b \in \mathbb{R}$ $x_{N} = -b/a$ b = 0: y = ax Proportionalitätsfaktor a
Betragsfunktion	$f(x) = x = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$	$f: \mathbb{R} \to [0, \infty)$
y 2 1 1 1 2 3 x	Beschränktheit Produkt Quotient Wurzel Dreiecksungleichung	$ x \le a \iff -a \le x \le a$ $ xy = x y $ $ x/y = x / y , y \ne 0$ $ x = \sqrt{x^2}$ $ x + y \le x + y $

Quadratische Funktion		$f(x) = ax^2 + bx + c$	$f(x) = x^2 + px + q$
		$a, b, c \in \mathbb{R}, \ a \neq 0$	$p,q \in \mathbb{R}$
y 	f: Diskriminante Nullstellen	$\mathbb{R} \to \mathbb{R}$ $D = b^2 - 4ac$	$\mathbb{R} \to \mathbb{R}$ $D = p^2/4 - q$
	D > 0	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
x_2	D = 0 $D < 0$	$x_{1,2} = -b/(2a)$ keine reelle	$x_{1,2} = -p/2$ keine reelle
	Wurzelsatz von Vieta	$x_1 + x_2 = -b/a$ $x_1 x_2 = c/a$	$x_1 + x_2 = -p$ $x_1 x_2 = q$
S	Scheitelpunkt	$S\left(-\frac{b}{2a},c-\frac{b^2}{4a}\right)$	$S\left(-\frac{p}{2}, q - \frac{p^2}{4}\right)$
Polynom	$P_n(x) = \sum_{i=0}^n a_i x^i$	$P_n: \mathbb{R} \to \mathbb{R}, \ a_i \in \mathbb{R}, \ i =$	$=0,,n,a_n\neq 0$
$x^* \in \mathbb{R}, b_{n-1} = a_n,$ $b_{i-1} = b_i x^* + a_i, i = 1,, n-1$ $P_n(x^*) = b_0 x^* + a_0$ $P_{n-1}(x) = \sum_{i=0}^{n-1} b_i x^i$	Nullstellen Linearfaktor- zerlegung Horner-Schema Polynomdivision	P_{n-r} - Polynom ohne $a_n a_{n-1} a_{n-2}$	$(x_2)\cdots(x-x_r)P_{n-r}(x),$ reelle Nullstellen $\cdots a_2 a_1 a_0 $ $x^*b_2 x^*b_1 x^*b_0 +$ $b_1 b_0 P_n(x^*)$
Rationale Funktion	$f(x) = \frac{P_n(x)}{P_m(x)}$	$f: \mathbb{R} \to \mathbb{R}, P_n(x) = \sum_{i=0}^n a_i \in \mathbb{R}, i = 0,, n, b_j \in x$ verschieden von den	$\mathbb{R}, j = 0,, m, a_n, b_m \neq 0$
	Nullstelle x_0 Polstelle x_0 Lücke x_0	wenn $k > 0$, $l = 0$ $(x_0$ wenn $k < l$ $(x_0 \notin D_f)$ wenn $k \ge l > 0$ $(x_0 \notin$	
Exponentialfunktion	$f(x) = a^x$	$f: \mathbb{R} \to \mathbb{R}^+, \ a \in \mathbb{R}, \ a$	> 0
a=1/2 a=1/4 a=4 a=2	natürliche Basis Euler-Zahl Potenzgesetze		$45 23536$ $a^{x_1}/a^{x_2} = a^{x_1 - x_2}$
-3 -2 -1 1 2 3 x			

16 1 Aufgaben

Logarithmusfunktion	$f(x) = \log_a x$ $\log_{10} x = \lg x$	$f: \mathbb{R}^+ \to \mathbb{R}, \ a$ $\log_e x = \ln x$	$\in \mathbb{R}, \ a > 0, \ a \neq 1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Definition Nullstelle Produkt Quotient Exponent Potenz Wechsel der Bas Identität	$y = \log_a x \iff$ $x_{\mathrm{N}} = 1, \mathrm{d. h.}, d. h$	$\log_a 1 = 0$ $c + \log_a c$ $c_a b - \log_a c$ $c_a b$
Trigonometrische Funktionen Arcusfunktionen		$f(x) = \sin x$ $f(x) = \arcsin x$	$f(x) = \cos x$ $f(x) = \arccos x, k \in \mathbb{Z}$
y π $\arccos x$ $\frac{\frac{\pi}{2}}{1} \arcsin x$ I -1 $\frac{\pi}{4}I = \frac{\pi}{2}$ $\cos x$ $\frac{\pi}{2} = 2\pi$	f: Periode Nullstellen Symmetrie Definition $f:$ Nullstellen Symmetrie	$\sin x$ $\mathbb{R} \to [-1, 1]$ $\sin x = \sin (x + 2k\pi)$ $x_{N} = k\pi$ $\sin (-x) = -\sin x$ $y = \arcsin x$ $\implies x = \sin y$ $[-1, 1] \to [-\pi/2, \pi/2]$ $x_{N} = 0$ $\arcsin (-x) = -\arcsin x$	$\cos x$ $\mathbb{R} \to [-1, 1]$ $\cos x = \cos (x + 2k\pi)$ $x_{N} = \pi/2 + k\pi$ $\cos (-x) = \cos x$ $y = \arccos x$ $\Rightarrow x = \cos y$ $[-1, 1] \to [0, \pi]$ $x_{N} = 1$ $\arccos (-x) = \pi - \arccos x$
Trigonometrische Funktionen Arcusfunktionen		$f(x) = \tan x$ $f(x) = \arctan x$	$f(x) = \cot x$ $f(x) = \operatorname{arccot} x, \ k \in \mathbb{Z}$
$\frac{y}{\arctan x}$ $\frac{\pi}{2}$ $\frac{\pi}{4}$ $$	f: Periode Nullstellen Symmetrie Definition $f:$ Nullstellen Symmetrie	$\tan x$ $\mathbb{R} \setminus \{\pi/2 + k\pi\} \to \mathbb{R}$ $\tan x = \tan (x + k\pi)$ $x_{N} = k\pi$ $\tan (-x) = -\tan x$ $y = \arctan x$ $\implies x = \tan y$ $\mathbb{R} \to (-\pi/2, \pi/2)$ $x_{N} = 0$	$\cot x$ $\mathbb{R} \setminus \{k\pi\} \to \mathbb{R}$ $\cot x = \cot (x + k\pi)$ $x_{N} = \pi/2 + k\pi$ $\cot (-x) = -\cot x$ $y = \operatorname{arccot} x$ $\Rightarrow x = \cot y$ $\mathbb{R} \to (0, \pi)$ keine $\operatorname{arccot} (-x) = \pi - \operatorname{arccot} x$

Monotonie, Beschränktheit, Umkehrfunktion

2.1 Die Graphen folgender Funktionen sind zu entwerfen:

a)
$$y = f(x) = \frac{1}{x^2}$$
 b) $y = f(x) = \frac{1}{(x-1)^2}$

c)
$$y = f(x) = \frac{1}{x^2 - 1}$$

2.2 Gesucht sind Definitionsbereich und Wertebereich sowie die Graphen folgender Funktionen:

a)
$$y = f(x) = \sqrt{-2x - 3}$$

b)
$$y = f(x) = \sqrt{(a-x)(b-x)}$$
,
zu diskutieren ist $a \neq b$ und $a = b$.

2.3 Sind folgende Zuordnungen Funktionen?

a)
$$y = f(x) = \begin{cases} x, & x^2 = x \\ 2, & x \neq 0 \end{cases}$$

b)
$$y = f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

2.4 Das Monotonieverhalten folgender Funktionen ist zu untersuchen:

a)
$$y = f(x) = ax$$
 b) $y = f(x) = ax^2$

c)
$$y = f(x) = \frac{\sqrt{5x+4}-3}{\sqrt{5x+4}+4}, \ x \ge -\frac{4}{5}$$

d)
$$y = f(x) = x - \sqrt{x^2 - 4}, \ x \ge 2$$

- **2.5** Ist die Funktion $y = x^4$
 - a) im Intervall $0 \le x < +\infty$,
 - **b)** im Intervall $-\infty < x \le 0$,
 - c) im Intervall $-\infty < x < +\infty$,
 - \mathbf{d}) im Intervall $-2 \le x \le 1$

umkehrbar? Wie lautet gegebenenfalls jeweils die Formel für die Umkehrfunktion? Auf welchem Intervall ist die Umkehrfunktion definiert?

Lineare Funktionen, Betragsfunktion

2.6 Folgende lineare Gleichungen bzw. Gleichungen, die sich auf lineare zurückführen lassen, sind zu lösen:

a)
$$\frac{3x-4}{5} - \frac{3-4x}{7} = \frac{5x-6}{10} - \frac{9-10x}{14}$$

b)
$$\frac{7}{3} + \frac{13}{5x} = \frac{13x - 24}{3x} - \frac{37}{20} + \frac{10}{x}$$

c)
$$\frac{2x+1}{3x-15} - \frac{x-11}{2x-10} = 1$$

d)
$$(x-3)(x-4) = (x-6)(x-2)$$

e)
$$ab + (b+1)x = (a+x)b + a$$

f)
$$(a+bx)(a-b) - (ax-b)(a+b) = ab(x+1)$$

g)
$$(a+b)x + (a-b)x - ax = b+c$$

$$\mathbf{h}) \quad \frac{1}{2} \left(\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} x - 1 \right) - 1 \right] - 1 \right\} - 1 \right) - 1 = 0$$

$$\mathbf{i)} \quad \frac{a-x}{bc} + \frac{b-x}{ac} + \frac{c-x}{ab} = 0$$

j)
$$\frac{2x^n + 7x^{(n-1)}}{9} + \frac{7x^n - 44x^{(n-1)}}{5x - 14}$$
$$= \frac{4x^n + 27x^{(n-1)}}{18}$$

$$\mathbf{k)} \quad \frac{x - \sqrt{a}}{\sqrt{b} + \sqrt{c}} + \frac{x - \sqrt{b}}{\sqrt{a} + \sqrt{c}} + \frac{x - \sqrt{c}}{\sqrt{a} + \sqrt{b}} = 3$$

1)
$$\frac{a}{b}(a-x) + \frac{a}{c}(b-x) + \frac{c^2 - ax}{a} + \frac{ab - cx}{b}$$

= $\frac{a^2}{b} + \frac{c^2}{a}$

m)
$$(2\sqrt{x}+3)(2\sqrt{x}-3)=7$$

n)
$$\sqrt{7x+2} = \frac{5x+6}{\sqrt{7x+2}}$$

$$\mathbf{o)} \quad \sqrt{14 - x} + \sqrt{11 - x} = \frac{3}{\sqrt{11 - x}}$$

$$\mathbf{p)} \quad \left(\sqrt{a\sqrt{b}} - \sqrt{b\sqrt{a}}\right) = a\sqrt{b\sqrt{x}} - b\sqrt{a\sqrt{x}}$$

$$\mathbf{q)} \ \sqrt{a^{7-3x}} \cdot \sqrt[3]{a^{x+1}} \cdot \sqrt[4]{a^{5x-7}} \cdot \sqrt[5]{a^{7-2x}} = 1$$

$$\mathbf{r)} \quad \left(\frac{3}{4}\right)^x = \left(\frac{4}{3}\right)^7$$

2.7 Zu bestimmen sind alle Zahlen $x \in \mathbb{R}$, für die folgende Gleichungen erfüllt sind:

a)
$$\left| \frac{3}{2}x - 2 \right| = \frac{5}{2}$$
 b) $|2x+1| - |x-1| - 1 = 0$

c)
$$||x+1|-|x+3||=1$$

2.8 Zu bestimmen sind alle $x \in \mathbb{R}$, für die folgende Ungleichungen gelten:

a)
$$|3x-9| \ge 1$$
 b) $|x+1|-4 < 0$

c)
$$|x| + |x - 2| < 5$$

18 1 Aufgaben

2.9 Die Menge aller Punkte (x, y) mit |x| + |y| = 1 ist im kartesischen Koordinatensystem (O, x, y) darzustellen.

- 2.10 Eine Baustelle wird von einer 4 km entfernten Mischzentrale mit Transportbeton beliefert. Der eingesetzte Mischtransporter fährt im Pendelverkehr leer mit einer Geschwindigkeit von 40 km/h und beladen mit einer Geschwindigkeit von 30 km/h. Die Übernahme des Mischgutes dauert 6 min, das Entleeren auf der Baustelle 4 min. Wie viel Fahrten können bis zur Frühstückspause durchgeführt werden, wenn die Abfahrt um 6.15 Uhr vom Betonwerk erfolgt und die Frühstückspause gegen 9.00 Uhr im Betonwerk stattfinden soll? Vor der Pause muss eine gründliche Reinigung des Fahrzeugs von Betonresten erfolgen, wofür 15 min in Rechnung gestellt werden.
- 2.11 Um eine wichtige Durchgangsstraße nach einem Erdrutsch wieder freizumachen, werden drei Bagger eingesetzt. Das erste Fahrzeug würde das Geröll in 27 Tagen, das zweite in 36 Tagen und das dritte in 54 Tagen wegschaffen.
 - a) Wie lange benötigen alle drei Bagger gemeinsam für diese Arbeit?
 - b) Wie lange dauern die Aufräumungsarbeiten, wenn der zweite Bagger erst am zweiten Tag und der dritte Bagger erst am vierten Tag eingesetzt werden kann?
- 2.12 Vier Gipser sind mit dem Verputzen einer Hausfassade beschäftigt. Gipser A würde die Fassade allein in 12 Tagen, B in 14, C in 30 und D in 18 Tagen verputzen. In welcher Zeit wird die Arbeit fertiggestellt, wenn alle vier gemeinsam arbeiten?
- 2.13 Ein Becken einer Kläranlage kann durch drei Abflussrohre geleert werden, durch das erste in zwei, das zweite in drei und das dritte in sechs Stunden In welcher Zeit wird das Becken geleert sein, wenn das Wasser durch alle drei Abflussrohre gleichzeitig abfließt?
- **2.14** Zwei Stahlsorten enthalten 12 % bzw. 30 % Nickel. Aus beiden Stählen soll ein Stahl mit einem Nickelgehalt von 25 % und einer Masse von

- 180 kg geschmolzen werden. Wie viel kg Stahl jeder Sorte werden benötigt, wenn von Schmelzverlusten gänzlich abgesehen wird?
- 2.15 Für eine längere Autofahrt rechnet der Fahrer mit einer durchschnittlichen Geschwindigkeit von 60 km/h. Nachdem er genau die Hälfte der Strecke zurückgelegt hat, stellt er fest, dass er aufgrund von Baustellen durchschnittlich nur 40 km/h gefahren ist. Wie schnell müsste er die zweite Hälfte durchfahren, um den Zeitverlust wieder aufzuholen?
- 2.16 An einer Mauer, die eine Länge von $26\frac{2}{3}$ m, eine Breite von 1 m und eine Höhe von 4 m hat, arbeiten zwei Maurer. Der erste von ihnen kann, wenn er täglich 9 Stunden arbeitet, an einem Tage $5\frac{1}{3}$ m³, und der zweite, wenn er täglich 11 Stunden arbeitet, in 9 Tagen $53\frac{1}{3}$ m³ Mauerwerk fertigstellen. In welcher Zeit wird die Mauer fertig, wenn jeder der Maurer täglich 10 Stunden arbeitet und der erste 5 Arbeitstage, der zweite aber nur 2 Arbeitstage versäumt?
- 2.17 Bei einem Brand sollen alle Besucher ein vollbesetztes Kino durch die beiden Notausgänge innerhalb von drei Minuten verlassen können. Ein Notausgang hat wegen geringerer Breite nur zwei Drittel vom Durchlassvermögen des anderen. Wie lange dauert das vollständige Räumen des Kinos, wenn jeweils einer der beiden Notausgänge blockiert ist?
- 2.18 Bei einer Lokomotive macht auf einer Strecke von 441 m das Laufrad 112 Umdrehungen mehr als das größere Treibrad. Auf je sieben Umdrehungen des Laufrades kommen je drei Umdrehungen des Treibrades. Wie viel Umdrehungen macht das Treibrad auf einer Strecke von 10.5 km?
- **2.19** Auf einen unbiegsamen Stab, der durch die Punkte A und F verläuft, wirken sechs zu ihm senkrechte Kräfte, die nacheinander in den Angriffspunkten A, B, C, D, E und F angebracht sind. In A wirken 6 N abwärts, in B 4 N aufwärts, in C 5 N abwärts, in D 3 N aufwärts, in E 2 N aufwärts und in E 1 N abwärts. Die Entfernungen der Angriffspunkte betragen: $\overline{|AB|} = 3$ m, $\overline{|BC|} = 2$ m, $\overline{|CD|} = 4$ m,

Ableitung, 59, 61, 62, 64, 73, 112, 206, 222, 227–232,	Achsenabschnittsform, 45
234, 235, 237, 239, 257, 258, 260, 261, 264,	allgemeine Form, 45, 52, 209, 212
265, 300, 309, 310, 312–322	Dreipunkteform, 45, 209, 210
-regeln, 59, 247	Hesse-Normalform, 45, 214, 293, 295, 296
partielle, 81, 86, 281, 289–297, 299, 301	Parameterform, 45, 212
Abschreibung, 101, 105, 106, 331	Effektivzins
-zinssatz, 101, 332	-berechnung, 101, 107, 332
arithmetisch degressive, 101, 107, 331	-satz, 107, 108, 332–334, 337
digitale, 101, 107, 332	Eigenvektor, 32, 40, 188
geometrisch degressive, 101, 107, 332	Eigenwert, 32, 40, 188
lineare, 101, 106, 107, 331	Ellipse, 43, 51, 54, 69, 77, 198, 199, 205–207, 215, 216,
Adjunkte, 30	233, 235, 236, 264, 265, 269, 294
Annuität, 100, 104, 105, 107, 326, 333	Flächeninhalt, 75, 258
Arbeit, 41, 48, 84, 91, 192, 300	Endwert, 99, 102, 104, 106, 108, 323–326, 328–330, 333–
, , , , , ,	337
Barwert, 99, 100, 102, 106, 108, 323–325, 327–330, 332–	Ereignis, 110, 111, 128, 343, 360, 363
336	disjunkte, 110, 119, 342–350, 355
Bereich, 84, 90, 91, 299, 301	komplementäres, 110, 119, 342–346, 360, 362
beschränkt, 14, 17, 55, 57, 58, 134, 217–220	sicheres, 110, 347
Betrag, 14, 41	Teil-, 110
Biegelinie, 64, 96, 98, 228, 314, 317, 318, 321, 322	unabhängige, 110, 119, 128, 340–346, 350, 351,
Binomialkoeffizient, 9, 363	353, 357, 360, 362, 363
binomisch	unmögliches, 110, 111
Formel, 9, 12, 13, 143, 144, 153	Vereinigung, 110
Lehrsatz, 9	Erwartungswert, 111–113, 122, 124, 125, 127, 129, 131,
Bogenlänge, 71, 72, 75, 84, 91, 260–262, 300	349–351, 355–357, 362, 367, 368
0	Euler-Zahl, 15, 55
Charakteristische Gleichung, 92, 306–322	24101 24111, 10, 00
Charakteristische Gleichung, 52, 500 522	Folgoltöt 0
Dorlohan 101 104	Fakultät, 9
Darlehen, 101, 104 Determinante, 30, 35, 93, 175, 192	Federschwinger, 95, 97, 319 Fehler
Wronski-, 93	
Differenzenquotient, 59	absoluter, 60, 62, 63, 223, 224 relativer, 223, 224
Differenzial, 59, 86, 87, 300	Fehlerrechnung, 60, 62, 81, 87, 223, 285
Bogen-, 61, 83, 300	Fläche, 41, 42, 62, 74–77, 79, 90, 223, 252, 253, 257.
partielles, 81	258, 266, 269, 272, 275, 276, 293, 296, 297.
totales, 81, 86, 283	299
Differenzialgleichung, 95	-inhalt, 49, 53, 64–66, 72, 74, 83, 85, 89, 229–233,
n-ter Ordnung, 92	235, 236, 252, 288, 292, 301
erster Ordnung, 92, 94	Mantel-, 72, 77
homogene, 93, 94, 314, 315	Fluss, 84
inhomogene, 93, 94, 96, 318	Fundamentalsystem, 31, 92, 93
lineare, 92	Funktion, 59, 71, 92, 93, 113, 114, 122, 124, 349, 354
mit konstanten Koeffizienten, 310–312, 316	Arcus-, 16
zugehörige homogene, 92, 304–314, 318–322	Betrags-, 14, 17
Divergenz, 55, 56	differenzierbare, 60
bestimmte, 55, 56	Exponential-, 15, 23, 156
Drehwinkel, 95, 315	Gamma-, 113
Dreieck, 42	gerade, 14, 22, 153, 257
-ungleichung, 14	lineare, 14, 17, 135, 136, 141, 143
0	Logarithmus-, 16, 23, 156
Ebene, 42, 45, 46, 50, 52, 53, 90, 195, 196, 198, 209–212,	Potenz-, 153
280, 293–296, 299	quadratische, 15, 19
200, 200 200, 200	quadramente, 10, 13

rationale, 15, 21, 22, 152, 155	Körper
Stamm-, 70, 71, 73, 247, 251–254, 257, 261, 264,	Position, 96, 97
265, 268, 275	Kapitalwert, 106
Stichproben-, 113, 115, 116	-methode, 101, 328
trigonometrische, 16, 24, 161	Kardioide, 75
Umkehr-, 14, 17, 23, 59, 72, 134, 136, 156, 256,	Koeffizientenvergleich, 307–314, 319–322
261	Kombinationen, 110, 338–340
ungerade, 14	Konfidenzintervall, 115
Wurzel-, 135	konkav, 82, 225–227
Funktionen	streng, 61, 82
differenzierbare, 63, 225	Konvergenz, 55, 58
	konvex, 82, 225–227
Gauß-Algorithmus, 31, 32, 35	streng, 61, 82
Gerade, 42, 44–46, 50–53, 192, 196, 208	Koordinaten, 61, 72
Achsenabschnittsform, 42	-system, 41
allgemeine Form, 42, 196–198	-transformation, 46, 47, 54, 215
Hesse-Normalform, 42, 196, 197	-ursprung, 43, 46, 47
Momentenform, 44	ebene, 46
Normalform, 42	kartesische, 46, 47, 54, 61, 207, 215, 216
Parameterform, 42, 44, 52, 205, 208, 211, 212	Kugel-, 47, 54, 215
Punktrichtungsform, 42, 44 Punktrichtungsform, 42, 44	Polar-, 46, 54, 61, 72, 215
Zweipunkteform, 42, 44, 196	räumliche, 47
Gleichungssystem, 31, 32	Zylinder-, 47, 54, 216
	Krümmung, 61, 63, 69, 225–227, 245, 246
homogenes, 31, 186 inhomogenes, 31	-radius, 43, 61, 245, 246
lineares, 31, 32, 40, 93, 176, 180, 181, 183, 185–	Kraft, 41, 42, 48, 49, 88, 192
187, 358	-feld, 84, 91, 300
Gradient, 81, 86, 283	Einzel-, 88
Granzverteilungssätze, 113, 128, 362–367	Normal-, 195
Grenzwert, 56	Quer-, 237, 278
	Stab-, 48, 49, 191, 195
-regel, 55, 56	Kragarm, 96
linksseitiger, 56, 222	Kreis, 25, 43, 50, 51, 64, 65, 69, 161, 164, 201, 203, 206,
rechtsseitiger, 56, 222	229, 230, 232, 233
von Funktionen, 56, 219 von Zahlenfolgen, 55, 217	Thales-, 164
von Zamemoigen, 55, 217	Kriterium
TT: 0 1 to 11 F	Majoranten-, 55
Häufigkeit, 117	Vergleichs-, 55, 219
Hyperbel, 43, 51, 77, 199, 200, 202, 203	Kurve, 61, 72, 77, 83
	zweiter Ordnung, 43, 50, 198
Infimum, 14, 55	zweiter Granang, 19, 60, 190
Integral, 73, 74, 261, 278	T = arm m
über ebene Bereiche, 82, 90, 299	Lösung
bestimmtes, 71, 73	allgemeine, 92, 94, 304–322
Kurven-, 83, 90, 91, 300, 301	linear unabhängige, 92
unbestimmtes, 70, 73, 247	partikuläre, 93, 304–314, 318–322
Integration	Ladung, 83
-grenzen, 71, 252, 255	Laufzeit, 99, 102, 104, 105, 107, 108, 323, 328, 335–337
-intervall, 71, 273	linear
-konstante, 70	abhängig, 28, 33, 170–172, 174
-regeln, 70, 71, 73	unabhängig, 28, 30, 31, 33, 170–172, 174
-variable, 70	Linearkombination, 28, 31, 92, 169, 172, 367
logarithmische, 70	
mit Substutition, 70, 71	Masse, 83, 84, 87, 285, 299, 300, 356, 358, 365
partielle, 70, 71, 73, 264, 266, 268	Matrix, 28–30, 32, 34, 35, 172–174, 189
interner Zinsfuß, 101, 105, 328	-Multiplikation, 29
Methode, 101, 328	Diagonal-, 29, 35
Investition, 101, 105, 106, 108, 328, 329, 335	Dreiecks-, 29, 30
-rechnung, 100, 105, 328	Einheits-, 29

erweiterte Koeffizienten-, 31	von Guldin, 267, 269
inverse, 29, 30	von l'Hospital, 60, 62
Koeffizienten-, 31, 32, 93, 186, 192	Rente, 102, 108, 335
orthogonale, 29	arithmetisch wachsende, 102
quadratische, 29, 30, 35	ewige, 102, 108, 335
symmetrische, 29	geometrisch wachsende, 102
transponierte, 29	konstante, 102, 108, 323, 335
Maximum, 61	nachschüssige, 102, 323, 334–336
lokales, 82	vorschüssige, 102, 108, 330, 334–336
strenges lokales, 82	Resonanzfall, 93, 308, 309, 318, 321, 322
Minimum, 61	Rotationskörper, 71, 72, 76, 77, 263–265, 267–269
lokales, 82	
strenges lokales, 82	Sattelpunkt, 82
Moment, 42, 49, 72, 79, 84, 278, 279	Satz von Green, 83–85, 91, 301
axiales, 83	Schätzung, 115
Biege-, 80, 278, 279	Konfidenz-, 115, 117, 129, 367
Flächen- 1. Grades, 72, 85, 266, 267, 269, 299	Punkt-, 115, 131
Flächen- 2. Grades, 72, 78, 85, 88, 89, 272, 273,	Scheitelpunkt, 15
288	Schwerpunkt, 48, 72, 77, 78, 266–269
polares, 83	geometrischer, 83–85, 90, 91, 294, 297, 299–301
Schnitt-, 87, 286	Massen-, 83, 84, 90, 91, 299, 300
statisches, 72, 268, 269, 300	Schwingung, 95, 97, 315
Trägheits-, 72, 78, 272	Sektor, 71
Momentenlinie, 79, 98, 278, 320, 321	-formel von Leibniz, 258
monoton, 10, 17, 58, 63, 134, 218	Inhalt, 72
fallend, 14, 55, 135, 217, 225, 226	Skalarprodukt, 41, 48, 191, 197, 198
fallend, streng, 14, 61, 135, 150, 217, 218	Spatprodukt, 41, 42, 49, 193
steigend, 14, 55, 135, 217, 219, 225, 226	Störterm, 93
steigend, streng, 14, 61, 135, 150, 153, 217–219	Stab, 94, 96
streng, 217, 218	Standardabweichung, 111, 122, 124–126, 129, 130, 349,
	350, 355, 356, 358, 365, 368
Normale, 69, 245	Steigung, 14, 42, 44, 61
Nullfolge, 55, 219	-winkel, 42, 62, 207, 223
Nullhypothese, 116	stetig, 56, 57, 219
Nullstelle, 14–16, 21, 22, 63, 171, 183, 207, 217, 218,	linksseitig, 56
229, 252, 253, 261, 272	rechtsseitig, 56
	stückweise, 56
orthogonal, 32	Stichprobe, 114–116, 123, 128–130, 352, 353
	-funktion, 129, 365
Parabel, 43, 51, 52, 54, 64, 67, 199, 200, 202, 203, 205-	-umfang, 116, 367
207, 215, 228–230, 238	Summe, 9, 28, 29, 31
Parallelepiped, 49	-regel, 59
Permutationen, 110, 338	-zeichen, 9
Polynom, 15, 21, 22, 64, 152–154, 171, 183, 217, 218,	Riemann-, 71
222, 252, 261	Supremum, 14, 55
Taylor-, 60, 68, 243, 262	• , ,
Potenz, 9, 13, 16, 133, 139, 144, 145, 153, 157	Tangente, 43, 50, 51, 69, 201–207, 233, 235, 238, 245
-gesetze, 10, 15, 139, 158	-abschnitt, 51, 202, 204
Projektion, 41, 47, 48, 191, 192	Gleichung, 62, 69, 233, 235, 238, 245, 246
Pyramide, 49, 195, 196	Winkel, 69, 223
	Temperatur, 95, 97, 316, 320
Quantil, 111, 112, 115, 116, 127, 358, 362, 365	Test, 116
Querkraftlinie, 79, 98, 278, 321	χ^2 -Anpassungs-, 117, 131, 371
-	einseitiger, 117, 369, 370
Rang, 30, 35, 186	Signifikanz-, 116
-kriterium, 31	zweiseitiger, 117, 369
Regel	Tetraeder, 42, 49, 52, 195, 210
von Cramer, 32, 93, 205	Tilgung, 100, 101, 104, 105, 326
,,,	30,,,,,,

Annuitäten-, 100, 104, 326, 327 Raten-, 100, 104 Zinsschuld-, 100, 104 Trennung der Variablen, 92, 303–306, 310, 312, 314, 316, 317	taggenaue, 99 unterjährige, 99, 333 wechselnde, 99 Volumen, 42, 49, 72, 76, 77, 83, 87, 90, 263, 265, 267, 269, 285, 293, 297, 299, 300
Umfang, 111, 115, 116 Umgebung, 82 unbeschränkt, 14, 55, 56, 217, 218 Ungleichung, 10, 13, 133, 135, 141, 146, 150, 160, 324, 338, 343, 370 unstetig, 56, 57, 220, 226 Varianz, 111–113, 122, 124, 125, 130, 131, 349, 351, 355, 356, 367, 368 empirische, 113, 115, 365 Variation der Konstanten, 92–94 Variationen, 110, 338 Vektor, 28–30, 33, 34, 36, 38, 41, 45–47, 93, 169–172, 183 Einheits-, 41, 44–47, 54, 195–197, 203, 210, 214, 245 Normalen-, 42, 44–46, 61, 196–198, 203, 209, 212 Null-, 28, 31 Orts-, 41 Richtungs-, 42, 44–46, 203, 208, 209, 212 Tangenten-, 61 Vektorfeld, 83 stetig differenzierbares, 84 Vektorprodukt, 41, 42, 49, 193 Verteilung, 113, 115, 117 χ_n^2 -, 113 t_n -, 113 Binomial-, 111, 112, 353, 362–369 diskrete, 111, 350 Exponential-, 112, 115, 126, 127, 359, 360 Gamma-, 112 geometrische, 111, 112, 350, 351, 372 hypergeometrische, 111, 112, 352, 353 Normal-, 112, 113, 124, 125, 129, 356, 357, 363–366	Wahrscheinlichkeit, 110–112 Wendepunkt, 61, 63, 225, 226 Winkel, 41, 44–48, 50–54, 62, 63, 66, 147, 161, 164–166, 168, 197, 206, 208–210, 216, 223, 229, 230, 232, 234, 235 Polar-, 69, 245 Tangenten-, 69, 245 Wurzel, 9, 13, 14, 133, 145 -gesetze, 10 Wurzelsatz von Vieta, 15 Zahlenfolge, 56 divergente, 55 konvergente, 55 Zinsen, 99, 100, 103, 105, 107, 323, 325, 326 Zinsfaktor, 99–102, 323, 325, 326, 328, 329, 332, 333, 335 effektiver, 101 Zinssatz, 99, 100, 102–104, 108, 323–326, 335, 336 effektiver, 99 interner, 101, 329 Kalkulations-, 101 Zirkulation, 84 Zufallsvariable, 111, 113–116, 122, 124–127, 129, 349, 351–353, 355–369 diskrete, 111, 122, 351 stetige, 111, 112, 124, 354 Zufallsvektor, 113, 115 Zykloide, 75, 258
Poisson-, 111, 112, 123, 127, 128, 351, 352, 360, 362–364 Prüf-, 113 Rechteck-, 112, 124, 356 Standard-Normal-, 112, 113, 357 stetige, 112 Weibull-, 112 Verteilungsdichtefunktion, 112, 124, 350, 363 Verteilungsfunktion, 111–113, 115–117, 122, 124, 349, 350, 355–357, 359–362, 371, 372 empirische, 114 Verzinsung, 103, 108, 109, 325, 333 geometrische, 99, 109 jährliche, 335 lineare, 99, 103, 323, 329, 330, 333 stetige, 99 tägliche, 332	